

The Design of Control Architectures
for Force-Controlled Humanoids
Performing Dynamic Tasks

Stuart O. Anderson

CMU-RI-TR-13-14

*Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Robotics*

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

May 2013

© Copyright 2013 by Stuart O. Anderson. All Rights Reserved.

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Jessica K. Hodgins) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Christopher G. Atkeson)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Stefan Schaal (USC))

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Hartmut Geyer)

Approved for the University Committee on Graduate Studies

Preface

This thesis is about improving the process of designing controllers for humanoid robots. It describes tools we designed that enable us to iterate faster when experimenting with control systems that aggregate multiple model based sub-controllers.

Many model based humanoid controllers can be considered approximations to a fully general, but computationally intractable, controller. Typically, simplified models are used to make the control problem tractable, but must be well chosen to capture the most important features of the problem domain. Because it is difficult to know *a priori* which simplified representations will perform best, the ability to experiment with different representations is an important feature of an effective controller design workflow.

Control designs based on simplified state representations typically combine controllers that solve specific sub-problems into a single aggregate controller. Common examples include the aggregation of trajectory generators with trajectory trackers, and balance controllers with end-effector force controllers. The primary contribution of this thesis is a method for aggregating sub-controllers that automates constructing models of the behavior of those sub-controllers. This method allows tight runtime coupling between sub-controllers, while limiting the need to adjust several sub-controllers to compensate for experimental changes made to any individual sub-controller. We call this combination of tightly coupled sub-controllers with automated model building Informed Priority Control.

We describe the application of Informed Priority Control to humanoid balance tasks, including the bongo-board balance task, and show experimental results in both simulation and hardware environments. We produced stable controllers for simple

balance tasks in both environments, but were only able to demonstrate robust controllers for the more difficult bongo-board task in simulation. We include an analysis of the instability of the bongo-board controller in hardware, focusing on the role of unmodeled sensor dynamics.

Acknowledgments

The author wishes to thank Dr. Jessica K. Hodgins, who advised the research and writing of this thesis, and without whose expertise, wisdom, support and patience this work could not have succeeded. Dr. Christopher G. Atkeson was an invaluable source of sage advice and discussion throughout the course of this work. Additional thanks are due to the author's unerringly supportive parents, and of course, to the red-shoed robot's first namesake, Dorothy Haffey.

Financial support was provided by NSF Grants CNS-0224419, DGE-0333420, ECS-0325383, and EEC-0540865.

Contents

Preface	iv
Acknowledgments	vi
1 Introduction	1
1.1 Example Tasks	5
2 Related Research	10
2.1 The Humanoid Form	10
2.1.1 Aggregate Controllers and Simplified Models	11
2.1.2 Joint Torque Control	20
2.1.3 Modeling and Sensing Errors	21
3 Simplified Models	24
3.1 Related Model Reduction Research	26
3.2 Notation	29
3.2.1 System Representation	29
3.2.2 Control Representation	30
3.3 Approximation Error in Simplified Models	31
3.3.1 Computational Difficulties	33
3.3.2 Selecting Features	34
3.3.3 Selecting Benign Actions	34
3.4 Automated Model Reduction	36
3.5 Automatic Generation of Linear Models	38

3.6	Automatic Generation of Reduced Models	39
3.6.1	Linear Models	39
3.6.2	Nonlinear Models	41
3.6.3	Relation to Generalized Coordinates and Lagrangian Dynamics	45
3.7	Bongo-Board Reduced Model Design	47
3.7.1	Action Space Selection	49
4	Controller Architecture	53
4.1	Related Research in Humanoid Robot Control	58
4.2	Trajectory Optimization	60
4.3	Policy Mixing Control Framework	63
4.3.1	Dynamics	64
4.3.2	Policy Mixing	64
4.3.3	Policy mixing	65
4.4	Implementation	65
4.4.1	Lumped mass policy	66
4.4.2	Body posture policy	67
4.4.3	Static contact load policies	68
4.4.4	Solving for Desired Torques	69
4.5	Informed Priority Control	69
4.5.1	Informed Priority Control Framework	71
4.6	Implementation of Informed Priority Control	74
4.6.1	Base Policy	74
4.7	Linear Feedback Component	76
4.8	Gravity Compensation Component	81
4.9	Enforcing Output Constraints	83
4.10	Receding Horizon Control	84
4.10.1	System Models for Receding Horizon Control	86
4.11	Mode Switching Control	87
4.12	Summary	90

5 Modeling and Sensing Error	91
5.1 Kinematic Calibration	91
5.1.1 Initial Calibration	92
5.1.2 On-line kinematic recalibration	92
5.2 Load Calibration	94
5.2.1 Joint load sensors	94
5.2.2 Foot load sensors	95
5.3 Model Identification	96
5.4 Model Adaptation	97
5.4.1 Full model	98
5.4.2 Simplified models	100
6 Experimental Results	102
6.1 Seesaw Balance	102
6.1.1 Experimental Setup	103
6.1.2 Trials	103
6.1.3 Discussion	104
6.2 Bongo-Board Balance	110
6.2.1 Bongo-Board Simulation	110
6.3 Results	111
6.3.1 Mode Switching Control	114
6.4 Failure Analysis	117
6.4.1 Discussion	138
7 Conclusions	143

List of Tables

3.1	Reduced Models	47
3.2	Bongo-board Eigenvectors	49
4.1	Sub-policy relationships	55
6.1	Decision Surface Parameters	116

List of Figures

1.1	Sarcos Primus Biped.	6
1.2	The Sarcos Primus humanoid on a seesaw.	7
1.3	The Sarcos Primus humanoid on a bongo-board.	8
3.1	Reduced model design processes	37
3.2	Alterations to finite difference for model reduction	40
3.3	Lumped-mass accelerations	46
3.4	Reduced models of the bongo-board	48
3.5	Bongo-board kinematics	49
3.6	Bongo-board action space	51
3.7	Bongo-board eigenvectors	52
3.8	Orthogonal Torques	52
4.1	Software architectures	54
4.2	The reduced lumped mass seesaw model	67
4.3	Simulated biped performing bongo-board balance task	71
4.4	Policy Mixing and Informed Priority Control	72
4.5	Control architecture implementations	73
4.6	Control flow diagram for task and base policy	76
4.7	Oscillation during gain tuning	80
4.8	Underdetermined gravity compensation	82
4.9	Sequence of optimization steps in the bongo-board controller	83
4.10	Hybrid Linear Dynamics	88

5.1	Foot accelerations	93
5.2	Methods for applying test torques	95
5.3	Mass model fit	97
6.1	Policy dominance	107
6.2	Model adjustment during trial without external disturbance.	108
6.3	Model adjustment during external disturbance.	109
6.4	Bongo-board angle	112
6.5	Bongo-board model robustness	113
6.6	Bongo-board mass error robustness	115
6.7	High Frequency Failure (State)	119
6.8	High Frequency Failure (Action)	120
6.9	Bang-Bang Failure (State)	121
6.10	Bang-Bang Failure (Action)	122
6.11	Increasing Oscillation Failure (State)	123
6.12	Increasing Oscillation Failure (Action)	124
6.13	Action Transient	125
6.14	Action Transient Velocity	126
6.15	Gain Response	127
6.16	Gain Trials	129
6.17	Gain Trials Actions	130
6.18	Hardware to simulation failure state comparison	131
6.19	Hardware to simulation failure action comparison	132
6.20	Signal Delay Trials State	133
6.21	Signal Delay Trials Velocity	134
6.22	Contact Model Trials State	136
6.23	Contact Model Trials Action	137
6.24	Force Plate Sensor Traces	139
6.25	Force Plate Sensor Error	140

Chapter 1

Introduction

The design and implementation of control systems for humanoid robots presents a combination of challenges not encountered elsewhere in robotics literature. Principal among these challenges are the large number of unique degrees of freedom and control inputs, the difficulty of building accurate physical models of these systems, and the complex contact between the robot and its environment encountered during dynamic balancing. Extensive research during the past forty years has resulted in methods for designing controllers that meet these challenges for specific tasks, with varying degrees of success. Among these existing methods, we are particularly interested in the model based optimal control framework. This framework can be applied naturally to a wide variety of tasks, and is already well studied in other areas of robotics.

Within the model based optimal control framework, it is widely accepted that tractable solutions for humanoid robots require the use of heuristics and simplifications based on domain knowledge. We consider two broad categories of simplifications: first, the use of approximate models to reduce dimensionality and second, the division of a complex control task into simpler tasks, each performed by an independent sub-controller. These simplifications are approximations that carry a cost, paid in suboptimal performance and lost stability guarantees. While it is not surprising that the fundamentally hard problem of designing an optimal policy for a nonlinear time-invariant system cannot be solved practically except in approximation, there are surprising differences between the performance of controllers based on the various

approximations. This thesis investigates both categories of simplification made in the design of controllers for humanoid robots, and the impact these approximations have on system performance.

The central contribution of this thesis, Informed Priority Control, is a method for constructing a humanoid control system that aggregates model based sub-controllers. Informed Priority Control is distinguished by its ability to build new models of sub-controller behavior after every configuration change. These models allow model based sub-controllers to automatically adapt to configuration changes made to other sub-controllers, while still using a cascade style control architecture that tightly couples controller outputs. In this way, Informed Priority Control provides tight run-time coupling of sub-controllers, while de-coupling configuration-time changes made to individual controllers. This combination of properties permits rapid experimentation with simplified model representations and other configuration-time parameters, because changes to one sub-controller do not require reciprocal changes to other components.

Other control designs also permit this decoupling between sub-tasks, but that de-coupling is often achieved by enforcing a run-time separation into independent modes or subspaces. This decoupling can be difficult to achieve when tasks are sensitive to model error. Other existing designs that do not employ this type of stiff run-time decoupling, such as those based on behavioral primitives or trajectory tracking, introduce configuration-time dependencies between sub-policies. For example, because of these dependencies, when a behavioral primitive is altered, any policies that employ that primitive may need to be updated to reflect that alteration.

The primary design goal of Informed Priority Control is to allow rapid experimentation with different simplified models. Model simplification is widely used because the computational complexity of many model based controllers is tied strongly to the dimensionality of the system model they operate on. Model reduction decreases these computational costs by creating simplified approximations to complex system models. The performance of a controller using a simplified model, relative to one using the corresponding full model, depends on the relationship between the task being performed and the model simplification used. Because this relationship is complex,

efficient experimentation and iteration are important properties of an effective control design methodology.

One example of the complexity of this relationship occurs when decoupling the coronal and sagittal plane dynamics of the body, a common choice for simplified models of humanoid standing balance. For some tasks, the error introduced by this simplification is small. However, controllers that use these models can have difficulty when the behaviors needed to complete the task require significant angular momentum and a body configuration in which the axes of the inertia ellipse are not aligned to the sagittal and coronal planes. For these tasks, the use of these decoupled models may significantly reduce performance because the dynamic coupling between the two planes is not captured in the control design process.

Similarly, if a simplified model represents only the robot's angular momentum, the joint accelerations required to achieve a specific change in that momentum are determined by the current joint angles. If an optimal controller uses the simplified model state as the input to its objective function, it cannot accurately model joint accelerations or total kinetic energy. For example, when the knee joints are near a singularity, some changes in total system momentum may be possible but require very high knee acceleration to achieve. Because the current joint angles are not fully captured by the simplified model's state, a controller using that simplified model may select actions that result in undesirable joint accelerations.

Likewise, the lack of a knee joint in some sagittal models can have similar effects, restricting the space of control results to those that do not require knee motions. Some models, like SLIP [Alexander, 1992], use a telescoping joint to approximate a rotational knee joint. However, even this approximation does not capture the range of motion limits and the dependence of the end effector Jacobian on knee angle that a rotational knee introduces. Additionally, some controllers and design methodologies are more sensitive to errors in sensor calibration and model parameters than others.

The automatic model reduction techniques we introduce in this thesis make it feasible to rapidly iterate the design of the reduced model component of a larger control framework, making it easier to explore which features are important for a given task, and which models are robust to model parameter error. How well these simplified

models approximate the salient features of the full model, and the performance impact of this approximation are the focus of Chapter 3.

Informed Priority Control specifies how the sub-controllers used to construct a task solution are combined. By separating a control problem into discrete stages, such that the outputs of these stages are independent, overall computational complexity can be reduced significantly. However, when the parts of the problem solved in each of these stages are not truly independent, assuming their independence may result in sub-optimal performance.

One example occurs in the design of trajectory tracking zero moment point controllers [Kajita et al., 2003]. In this framework the trajectory planner and trajectory tracker are designed independently. Because performance depends on the relationship between the tracker and the trajectory it tracks, optimizing the performance of the aggregate system requires that both the trajectory and its tracker be optimized simultaneously. Similarly, when a sub-controller’s output is expressed in a low dimensional space and used as an input to a lower-level controller, it may not be able to express the optimal actions for its task in the input space of that lower-level controller.

In Chapter 4, we examine several control frameworks and the problems that can result from their implicit decoupling of sub-tasks, then describe Informed Priority Control, and its predecessor in our work, Policy Mixing Control, which attempt to mitigate some of these effects.

Both these types of simplifications can influence a controller’s sensitivity to unmodeled differences between the physical system and the full model of the system, as well as its sensitivity to incomplete or inaccurate sensing of the system state. For example, the Sarcos humanoid has a stiff hydraulic umbilical that applies forces on the order of 25N to the robot’s hip during standing balance tasks. These unmodeled disturbances can significantly affect the performance of controllers that are unable to compensate for them. Model and sensor error, and methods that can be used to mitigate them, are addressed in Chapter 5.

In Chapter 6 we describe the results of our experiments with policy mixing control and its successor, informed priority control. With policy mixing control we were able to demonstrate stable behavior on our seesaw-push task both in simulation and on

the physical hardware. The informed priority controller was able to complete the bongo-board task in simulation, but we were unable to demonstrate stable performance using the hardware. We provide an analysis and additional experimental data investigating why the controller was unable to stabilize the system, focusing on the role of systematic errors in sensing the position of the bongo-board roller caused by unmodeled sensor dynamics.

This thesis describes contributions to the existing literature in humanoid robotics. The primary contribution made by this thesis is the **Informed Priority Control** framework (Section 4.5), and the **Automatic Model Reduction** method (Section 3.4) that permits its practical implementation. An additional minor contributions is the **Minimum Variance Gravity Compensation** (Section 4.8) technique used to build the robust base policy for our informed priority controller. It is generally applicable in the context of humanoid controllers. Finally, the **Time-Coupled Minimax** dynamic programming technique (Section 4.11) used in designing a mode switching controller that is robust to sensor error extends existing work in designing robust model based policies.

1.1 Example Tasks

This thesis discusses controllers for two tasks performed by the Sarcos Primus humanoid. These tasks are balance on a seesaw, and balance on a bongo-board. In our earlier work we also describe controllers for standing balance, forward walking, and motion capture playback [Anderson et al., 2006, 2007]. The primary contributions presented in this thesis were demonstrated in the context of the seesaw and bongo-board balance tasks. This section describes the Sarcos Primus biped, and the tasks we studied with it.

The experimental platform for this work was the Sarcos Primus biped shown in figure 1.1. The Sarcos Primus is a 1.6 meter tall humanoid robot that weighs approximately 92 kilograms. It has 34 hydraulically actuated joints, seven in each limb, three in the trunk, and an additional three in the neck. Each joint is equipped with a position sensor and a load cell, and each foot contains a six axis load sensor. A



Figure 1.1: Sarcos Primus Biped.

five kHz local control loop allows compliant force control of all joints. In addition to the per-joint load cells each foot is equipped with a six-axis load cell. A Microstrain 3DM-GX3 IMU [Microstrain, Inc., 2008] attached to the robot’s chest provided global orientation information.

The seesaw balance task required the Sarcos humanoid to balance on a plank supported by a rotational joint (figure 1.2). The robot’s feet were located at opposite ends of the plank, and the rotational joint was positioned in the middle of the plank. We built the small seesaw using a board mounted on bearings with a total range of motion of 20 degrees from side to side. The task began with one end of the plank in contact with the ground. Then, the robot shifted its weight so that the opposite end of the plank came into contact with the ground. During the course of a single trial the robot shifted its weight to alternate which end of the board was in contact with the ground several times. In some trials, the robot was also pushed by the experimenter

Figure 1.2: The Sarcos Primus humanoid on a seesaw.

so that the end of the plank left the ground unexpectedly.

The seesaw task is difficult because changes in contact state are hard to predict. In particular, the impact between the end of the board and the ground can easily cause the foot on the end of the board opposite the impact to lose contact with the board. Absorbing the shock of this impact requires that the robot adjust its impedance in anticipation of the impact event. Other researchers have also studied the seesaw balance task, and found the same principal sources of difficulty [Hyon, 2009].

The bongo-board task requires the robot to maintain its balance on a circus prop known as a rola-bola or bongo-board. A bongo-board consists of a long cylinder that is free to roll on the ground, and a plank placed on top of that cylinder. The cylinder does not slip with respect to either the ground or the plank. The performer stands on the plank and balances without allowing the plank to contact the ground, or roll

Figure 1.3: The Sarcos Primus humanoid on a bongo-board.

off the end of the cylinder. The experimental setup used for the bongo-board balance task is shown in figure 1.3.

Both the seesaw and bongo-board tasks have underactuated degrees of freedom that are sensitive to large forces. In the seesaw task both the seesaw itself and the unilateral foot contact constraints have this property, and in the bongo-board task the low-mass bongo-board sub-system has this property. In both tasks, it can be difficult to avoid applying large forces to these degrees of freedom if the robot is controlled by a stiff postural controller.

In the seesaw task the forces applied to the robot by the seesaw change rapidly as the end of the board comes into contact with the ground, and can cause one or both of the feet to lose contact with the board. In the bongo-board task the ability to rapidly shift the position of the roller depends on that motion not being coupled to

accelerations in the position of the robot’s center of mass. Errors in state estimation can result in large center of mass accelerations during position tracking.

The seesaw task benefits from compliance with the impact forces that occur when an end of the seesaw hits the ground. The bongo-board task does not include impact forces, but is simplified if the robot is able to comply with the board-roller system as it drives the board to a desired angle and position. Controlling the board angle requires compliance because the board-roller contact point is not precisely known and can change rapidly. The motion of each foot relative to the robot’s center of mass that is needed to change the board angle is determined by the kinematics of the board-roller contact point. This constraint motivates controlling board angle through compliant force control rather than stiff position control.

Chapter 6 discusses these tasks, and the performance of our controllers when applied to these tasks.

Chapter 2

Related Research

This chapter provides a broad overview of the context within which the research described in this thesis was conducted. More specific discussion of research related to the generation and application of simplified models is included in chapter 3. Likewise, discussion of research related to our work in control architecture design is discussed in chapter 4.

A central theme in the humanoid robotics literature is the need to resolve difficulties associated with the humanoid form. The first section of this chapter discusses these difficulties and the range of existing approaches to resolving them. A secondary theme that plays an important role in our work is the need for methods that produce accurate models of the physical robot hardware, and compensate for residual inaccuracies in those models. The second section of this chapter discusses model fitting and model error adaptation techniques related to those we employ.

2.1 The Humanoid Form

There are many reasons to build a robot with a humanoid form. These include the ability to navigate and manipulate the built environment effectively, the availability of example motion collected from humans, and the human social response to humanoid agents [Mutlu et al., 2009]. However, the humanoid form also presents unique challenges. These include the large number of degrees of freedom, the limited base of

support, redundant degrees of freedom, and the need for low impedance controllers in unknown environments. This section discusses existing approaches to meeting each of these challenges.

The challenges most central to the work in this thesis are those presented by the large number of degrees of freedom required for a humanoid robot. These challenges have been widely studied in the robotics literature, as well as the graphics literature related to animating humanoid characters. Because these research communities share many techniques, we organize our discussion of related work primarily by properties of the approach, rather than by the application domain.

2.1.1 Aggregate Controllers and Simplified Models

A common approach when developing control policies for humanoids is to decompose a task into subtasks that are individually less difficult to solve. How a task is decomposed into sub-controllers and how these sub-controllers are aggregated to produce a solution is an important property of a control approach. Methods like state space funnels [Mason, 1985, Erdmann and Mason, 1988], behavioral primitives [Mataric et al., 1998, Fod et al., 2002, Jenkins and Mataric, 2003], hybrid systems [Branicky et al., 2000], and reinforcement learning based on behavioral primitives [Bentivegna and Atkeson, 2001] are all variations of this basic divide and conquer approach. In practice, finding a useful decomposition is often not automated and relies heavily on expert human knowledge of a particular problem domain.

Control decompositions often take one of two forms, serial decomposition and parallel decomposition. Controllers that combine these forms are also possible. Serial decomposition of a control problem involves separating it into stages, arranged from low level behavioral controllers to high level task controllers. Each stage's control output is treated as the control input to the next stage, and in this way a chain of linked controllers is built. Parallel decomposition involves decomposing a complex problem into multiple tasks that share a single control output space, such as a posture controller that moves an end effector and a balance controller that controls center of mass. These controllers have control outputs in non-orthogonal subspaces of the space

of joint torques.

Most approaches to generating motion for humanoids, including ours, make extensive use of simplified models of the humanoid. Single lumped mass models are among the most intuitive and analytically tractable of these simplified models. Researchers have recognized that stabilizing the center of mass while respecting the constraints imposed by the small foot contact region is often the principal challenge when balancing [Garcia et al., 1998, Goswami et al., 1996, M. Vukobratovic and B. Borovac, 2004]. Because the motion of the center of mass is fully determined by the ground contact forces, some researchers have developed algorithms for transforming a desired center of mass acceleration into foot contact loads, then expanding those contact loads into joint torques [Stephens, 2010, Hyon et al., 2007]. These methods fully determine the contact forces before considering the desired actions of other component policies, creating a strict priority ordering of control objectives.

For example, the serial decomposition based Dynamic Balance Force Control (DBFC) controller described in chapter five of Stephens' thesis [Stephens, 2011] constructs ground contact forces in two steps. First, a space of possible contact forces that produce desired momentum changes given expected external disturbance forces is computed. These desired momentum changes can be computed quickly by optimizing control actions over the simplified model. After the desired momentum change is chosen, joint torques that produce these momentum changes are computed. The first step, because it determines the total change in system momentum, must also determine the aggregate ground contact force. This strict priority ordering is required to extend the stability properties of the controller operating on the single mass system to the aggregate controller operating on the full body. Only if the desired aggregate ground contact forces produced by reduced model controller are unmodified by higher level controllers is it possible to argue that the center of mass of the full system will be stabilized because the center of mass of the reduced system is stabilized.

In contrast, the null space control methods introduced by Sentis and Khatib [2006] use a parallel decomposition structure to design stable controllers, but are often used with more complex, multi-body, approximate models. These methods combine several controllers with non-orthogonal output spaces. The highest priority controller, often

a balance control task, produces a low dimensional control output, often an aggregate ground contact force or center of mass motion. The control action of the controller with second highest priority is projected into the null space of the first controller's output space, ensuring that the combined control action, when projected into the control space of the balance task, is unaltered. This process continues until all control actions have been combined. This process allows researchers to produce controllers for essential tasks like maintaining balance only once. Then, task-specific controllers can later be added to control end effector position of body posture without the risk of altering the more important balance behavior.

While the ability to reason about the stability of the aggregate system based on the stability of the sub-controllers delivered by a strict priority ordering is desirable, there are two potential problems with this approach that we have tried to address in our work. First, when two control policies with very different impedances are combined in orthogonal subspaces, the aggregate controller can exhibit chattering behavior. This behavior occurs because the impedance mismatch between the controllers creates an aggregate controller with a long narrow impedance ellipse. In our early work with policy mixing control designs [Anderson and Hodgins, 2010], we combined a desired contact load with other control objectives to produce desired joint torques in a single operation, taking into account the desired actions of all policies simultaneously. This approach is similar to the null space control methods described by Sentis and Khatib, but relaxes the null space constraint into a weighted optimization problem. The intent was to regularize the impedance of the aggregate policy to improve stability.

The second problem with strict priority order approaches that our work attempts to resolve is that there is no explicit exchange of information between sub-controllers about their future control outputs. For example, a high priority balance controller may plan a series of ground reaction forces that maintain balance when faced with a non-minimum phases balance task. If a lower priority pose controller is unaware of the high priority controller's future plans it may drive the system to a configuration (i.e. fully extended knees) where the desired ground reaction forces cannot be achieved, destabilizing the aggregate controller. Alternately, if the desired pose is a function of the current center of mass, the system may oscillate in the null space of

center of mass motion. This oscillation occurs when the bandwidth of the posture and balance controllers are mismatched. Informed Priority control shares models of sub-controller behavior between sub-controllers so that model based sub-controllers can optimize their behavior based on knowledge of how other, lower priority, sub-controllers will behave. Specifically, information about the impedance of the connected sub-controllers is captured and provided in the form of a sub-system model. In the case of Informed Priority control this information sharing is achieved without relaxing the stability guarantees provided by priority based control methods.

A unicycle controller developed by Vos [1990] demonstrated two techniques for coupling sub-controllers that were influential in our work. First, the coupling of lateral and longitudinal controllers through gain scheduling based on the open loop dynamics of wheel speed is similar to our use of open loop models of sub-controllers. Our interest in this type of dynamic coupling was specifically influenced as well by Whitman's work on dynamic programming [Whitman and Atkeson, 2010] using instantaneously coupled policies. The second technique from Vos's work was the use of inner and outer loop controllers in the longitudinal controller. The use of the inner loop's open loop transfer function in designing the outer loop's Kalman filter gains was influential in our development of the model sharing feature of Informed Priority Control.

State Machines

One increasingly popular method of aggregating sub-controllers relies on finite state machines to transition between a set of simple control policies. These controllers are especially appropriate for tasks with distinct phases like walking, running, or jumping. The hybrid linear mode switching controller we discuss in section 4.11 provides an example of this type of policy applied to bongo-board balance.

The SIMBICON controller developed by Yin and colleagues [Yin et al., 2007] produced robust two and three dimensional behavior for a simulated humanoid. The authors show that its motions can be tuned automatically from human motion capture data. The controller design is similar to earlier work [Raibert, 1986, Anderson et al., 2005], in that it uses a finite state machine to transition between target poses, controls some link orientations with respect to the world frame, and achieves robust

performance using tuned linear feedback. The work was novel because it produced a large variety of behaviors in two and three dimensions, presented a method for semi-automatically altering controllers based on motion capture data, and used feedback error learning to generate feedforward torques.

The state machine transitions between desired poses on foot contact or after fixed time intervals. The swing leg femur orientation and the torso orientation are controlled relative to world coordinates. Linear feedback is used to continuously vary desired joint angles, often the swing leg hip and stance ankle, as a function of center of mass position (relative to the stance ankle) and velocity. Motion capture data is used to design controllers by using Fourier analysis to extract a periodic movement. That periodic movement is then tracked, with the phase of the tracking being reset on foot contact. Finally, feedback error learning is used to improve the behavior of the system over time and permit better performance with lower gains. The particular feedback error learning method employed computes the feedforward torque as a function of gait phase.

More recent work by Wang and colleagues extends the SIMBICON controller to make it more robust by optimizing its parameters over many trials [Wang et al., 2009]. This work uses the covariance matrix adaptation method [Hansen and Ostermeier, 1996] to optimize the gait parameters. Covariance matrix optimization is a derivative free optimization method that maintains a Gaussian distribution from which new test points are drawn, and updates this distribution based on the value of the objective function at those points. This approach allows it to make efficient use of samples, an important property when evaluating the objective function is computationally expensive, as it is in this case. In their later work, by optimizing in conditions where unexpected disturbances are applied, the authors are able to generate more robust controllers [Wang et al., 2010]. Finally, their most recent work showed that natural and robust gait could be generated using simple models of human muscle and tendon to drive the primary degrees of freedom, and optimizing per-muscle force and length feedback parameters as well as trajectory tracking gains and desired poses [Wang et al., 2012]. The resulting gait controller can be parameterized in fifty six parameters, making direct optimization of those parameters feasible.

Sampling Based Methods

Sampling-based dynamic programming [Atkeson and Stephens, 2007, Atkeson and Morimoto, 2003] and rapidly exploring random trees [LaValle, 1998] use random sampling of states to find policies or trajectories in high dimensional spaces. Because trajectory optimization is tractable in high dimensional systems, it can be used as a building block to construct trajectory-based controllers. These control methods do not aggregate sub-controllers, but attempt to find a policy in the full state space by exploring that space efficiently.

Sampling-based dynamic programming builds a locally linear policy and locally quadratic value function incrementally using trajectory optimization. The process iteratively improves an approximate policy and value function. At each iteration, a random point is selected and the current policy is used to compute an initial trajectory that is then refined by differential dynamic programming (DDP). The new value function approximation at the initial point, based on the newly optimized trajectory, is added to the value function approximation if the local approximation differs significantly from the prior value function at that point. The empirical value of the randomly sampled state is computed from this refined trajectory. If the expected value and true value differ significantly then the linear policy and quadratic value function approximation at the new point are added to the global policy. Each initial point is selected such that the current approximation of the value function at that point is less than some threshold value. That threshold value is slowly increased over many iterations of the point addition process.

To improve convergence towards a global optimum, the system periodically replaces the policy at a randomly selected point with other linear policies selected from the set of policies associated with nearby points. This replacement is made permanent if it reduces the cost of the trajectory starting at that point. Because this method only adds points with unexpected values to the policy, it constructs a sparse representation of the true value function.

Rapidly Exploring Random Trees are a path planning technique that can be applied to systems with dynamic constraints [LaValle and Kuffner, 2001]. These methods find feasible trajectories for a system, often with many degrees of freedom, by

building a trajectory tree that efficiently explores state space. Efficient exploration is achieved by sampling randomly in state space and choosing the nearest point in the tree to the randomly sampled state. The tree is then extended toward the randomly selected state by selecting an action that drives the system in the direction of that point. Successful search in high dimensional spaces in the presence of significant constraints requires well chosen sampling distributions [Kuffner et al., 2003]. The problem of finding good distributions from which to draw samples is a significant challenge when using RRTs to plan trajectories for humanoid robots performing general tasks.

One approach to generating human motion with RRTs uses a motion capture database to constrain the results of an inverse kinematics solution [Yamane et al., 2004]. The system generates motion for humanoid characters placing objects in constrained spaces. The RRT planner operates in a task space that represents the position of the characters hands. The inverse kinematics solver finds joint angles for the full character that produce the desired hand positions while avoiding self collision and attempting to produce poses that are similar to poses observed in a database of motions captured from actors performing a similar task. The path is converted into a trajectory by applying a velocity profile interpolated from nearby motions in the database. In this way the motion generator uses both domain specific knowledge, in the choice of representation for the RRT planner, and motion capture data, in the inverse kinematics, to produce natural human motions.

An additional example of the combination of trajectory libraries with stochastic methods was developed by Choi and colleagues [Choi et al., 2003]. This domain specific method used a probabilistic roadmap method to choose footstep locations for an animated character. The local planner that found motions to connect sequential footsteps used motions from a motion capture database as the basis for its motion generation.

Motion Capture

Humans are a readily available source of trajectory data. An increasing number of techniques that rely on motion capture data are now used productively by both

roboticists and graphics researchers. Roboticists are interested in creating motions for humanoid robots that appear natural [Kurazume et al., 2005] and in using humanoid robots for increasingly diverse tasks [Asfour et al., 2006]. Research in the graphics community on motion capture data focuses largely on reusing, modeling, and adapting previously captured motions to generate new animation. Quickly creating natural and physically realistic motion for animated human figures has been a primary focus for many graphics researchers [Rose et al., 1998, Pollard and Reitsma, 2001, Safonova et al., 2004, Kovar et al., 2002].

Motion re-targeting allows captured motions to animate characters with different kinematic or dynamic properties than the actor who initially performed those motions. Automatic retargeting of motion capture data to produce upper body trajectories for humanoid robots has been demonstrated [Safonova et al., 2003]. This work uses trajectory optimization techniques to modify the input trajectory to respect constraints such as joint limits, maximum joint velocities, and self intersection. The objective function used for optimization attempts to preserve the end effector position and small oscillations seen in the original motion as well as the overall joint angles. This work provides an example of how motion capture data could be transformed into trajectories expressed in the state space of a humanoid robot.

Motion graphs allow motion capture data to be reused through resequencing and concatenation of existing motion segments [Kovar et al., 2002, Lee et al., 2002]. Motion graph implementations must solve two problems. These problems are the construction of a graph that represents the possible transitions between segments of motion, and the identification of these segments within a motion capture database. To produce a finished animation, an interpolation method must be used to blend between the end of one segment and the beginning of the next. More recent work has shown that motion graph like approaches can be used to generate reactive controllers for humanoid walking [Levine et al., 2012].

Motion segmentation [Barbic et al., 2004, Beaudoin et al., 2007] is a technique for identifying groups of similar motions within a motion database. These techniques identify statistics of the states in the database and identify groups of trajectories that share similar statistics. For example, changes in the PCA can be used to identify

when a change in motion type has occurred, or a Gaussian mixture model can be fit to all states in the database and changes in behavior detected by changes in the most likely cluster associated with the current state.

Trajectory Optimization

Using motion capture data as either the initial trajectory for subsequent optimization and constraint enforcement [Safanova et al., 2003, Dasgupta and Nakamura, 1999] or to provide other input to the motion generation process [Shiratori et al., 2007, Kim et al., 2006] has been explored in the context of robotics.

Recent work on receding horizon differential dynamic programming [Tassa et al., 2007] extends earlier work in building global policies from libraries of trajectories for systems with many degrees of freedom [Atkeson, 1994]. This work introduces an alternative to the local approximation of the value function. The alternative is to compute the value function by fitting a quadratic model to a cloud of state/action pairs. These pairs are sampled in the neighborhood of the point about which the approximation is constructed. At each sampled point, the value of the state/action pair near each point in the trajectory is computed by simulating forward one timestep and using the value function approximation at the next timestep to provide an estimate of the value at the sampled point. The authors claim that this method provides a more accurate estimate of the local value function because it uses the full nonlinear dynamic of the system rather than a local approximation to the dynamics, and can be more efficient because it avoids the need to compute the second state space partial derivative of the dynamics model, F_{xx} .

The work of Sok and colleagues [Sok et al., 2007] is similar to the SIMBICON work in that it animates two dimensional figures using motion capture data. It differs significantly in its implementation. In particular, this method uses a trajectory optimization method to modify motion capture data so that it can be tracked stably by the animated character. Once a collection of these trajectories has been computed, they can be combined into a single controller using a linear regression method. This regression method computes the current desired state. The regression is based on the weighted interpolation of the subsequent states of the k nearest neighbors to

the current state. This control method is then adaptively improved by simulation. The improvement method is designed such that when a failure is detected in the simulated controller the system creates a new trajectory in the database that starts at the beginning of the last viable gait cycle and blends smoothly back to a stable gait already in the database. This warped trajectory is then rectified by the trajectory optimizer and added to the trajectory database used by the controller, ensuring that the same mistake will not be made again.

In the context of optimizing motion capture data, dynamic filtering refers to the process by which an input trajectory is altered to respect the constraints imposed by environmental constraints and system dynamics. The term filter indicates that no information about the future actions of the character are known, allowing the system to operate in real time on streaming data. The methods described in [Yamane, 2006, Pollard and Reitsma, 2001] modify the accelerations or torques at a joint to obey physical constraints. These constraints include torque or acceleration limits, and frictional contact constraints. The methods attempt to optimize tracking of joint angles and key points on the character’s body, such as the chest or toes.

2.1.2 Joint Torque Control

Another important property of a controller design is whether it uses desired positions, velocities, or torques. Hyon [2009] argues that joint torque based control permits low impedance behaviors that are important for interaction with unmodeled environments. Most humanoid robots use desired joint positions and velocities as their control output, rather than desired joint forces. This decision reflects limitations introduced by hardware design decisions. Electric motors offer many advantages over the hydraulic actuators used on the Sarcos Primus platform in terms of remote operation, noise, size, scaling, and cost. However, most electric humanoids in existence when the Sarcos Primus system was designed lacked joint torque sensors, which are required to build a joint level force feedback loop. Additionally most humanoids use electric motors with a high reduction ratio, and, as a result, have large reflected

inertia at the joint, making compliant force control challenging. Some notable exceptions [Wisse et al., 2006] to this design do exist, where electric motors have been used with very low reduction ratios to produce compliant actuation. The Sarcos Primus humanoid is equipped with joint force sensors and hydraulic actuators with low reflected inertia, making it suitable for joint torque based control.

A common joint-torque based controller design begins with desired accelerations, often computed by differentiating a desired trajectory, then deriving joint-torques from those accelerations using an inverse dynamics model. Full state inverse dynamics is widely employed by researchers trying to generate realistic animations for humanoid characters [Fang and Pollard, 2003, Yamane, 2006, Pollard and Reitsma, 2001]. Some researchers developing controllers for humanoid robots have also used this formulation [Nakanishi et al., 2007, Hyon et al., 2007], but in general the use of full system dynamics has been limited to trajectory planning applications [Kajita et al., 2003, Kuffner et al., 2002]. Sensitivity to error in the mass matrix is a significant factor in making full inverse dynamics approaches more popular in the graphics literature than the robotics literature.

Robust control techniques, such as model reference adaptive control [Vos and Von Flotow, 1990], and controllers optimized for H_∞ or H_2 disturbance rejection have been explored for humanoids by some researchers [Whitman and Atkeson, 2012, Wang et al., 2012].

2.1.3 Modeling and Sensing Errors

Model fitting allows the control system to improve over time. Approaches to model fitting can be classified by two properties. First, some approaches operate on parametric models, while others are designed for non-parametric models. Second, some approaches improve the model on-line, while the controller is running, while others improve it offline, processing batches of data between trials.

Parametric models of the system are powerful because they can describe nonlinear behavior over large regions of state space using relatively few parameters. Because there are fewer parameters, less data is required to produce the model. One approach

to model learning involves improving estimates of these parameters over time to better match observed behavior. While this method can make efficient use of existing knowledge about the behavior of the system, it is often the case that parametric models cannot describe the behavior of a system in precise detail. For example, the Sarcos biped has many flexible hoses and wires that span its joints. These hoses and wires shift as the robot moves, changing mass distribution, joint friction, and other parameters. These effects cannot be captured by the rigid body dynamics formulation we use to represent the robot. However, these unmodeled effects do impact the performance and stability of the robot. Nonparametric model learning addresses this problem by storing a large amount of data recording the observed behavior of the system in many states [Atkeson et al., 1997a,b]. In the methods we consider, nonparametric methods provide precise modeling but use data only locally, while parametric methods cannot reproduce all observed effects but use data efficiently.

Learning unmodeled robot dynamics while constructing a global control policy has been studied with other types of robots, including helicopters [Abbeel et al., 2006, Bagnell and Schneider, 2001] and robotic arms [An et al., 1988]. Because the robot is expected to spend the majority of its time near the reference trajectories, the algorithm can focus on modeling these regions of state space. This focus limits the amount of data and number of states at which local models will need to be built. Automated parametric modeling of the rigid body dynamics of humanoid robots has been documented by a number of researchers [Mistry et al., 2009, Ting et al., 2006, Venture et al., 2008]. Our method is based on the least squares regression formulation described by An and colleagues [1988]. Because our robot has torque sensors on every joint and we had a CAD model of the robot that could be used as a reference for the parameter values before applying SVD, we were able to avoid the problems with sparse data and non-physical parameters that much of the related work in this area addresses. Although we didn't face the sparsity problems that occur when building a mass model without prior information, our CAD model lacked many features of the physical system including the effect of the hydraulic umbilicals, the weight of oil, wiring, and other components not explicitly included in the original CAD design. Kalman filters have been used to estimate the state of a humanoid

robot before [Mahboobin et al., 2008], but our innovation is the use of an augmented Kalman filter that introduces additional state variables to explicitly represent external forces and model parameter error estimates.

Chapter 3

Simplified Models

This chapter introduces the automated reduced model generation framework we developed to support Informed Priority Control. Our method automates the process of computing reduced model dynamics when supplied with both a function that reduces states to the reduced model state space and a function that transforms simplified control actions to control actions in the full model. The chapter begins with a general discussion of the role of reduced models in humanoid control systems, and reviews existing techniques for creating those models. We then introduce the mathematical framework used to describe reduced models, and discuss the desired properties of these models. That framework is used to express the specific finite differencing method we use to automatically compute these models and their associated constraints and cost functions.

The controllers described in this thesis make frequent use of reduced model approximation, a well established technique in humanoid robotics and character animation. Many model based control design methods have a computational complexity that scales exponentially in the number of degrees of freedom in the state or action space of the underlying model. When the underlying model is a humanoid robot, typically with more than thirty degrees of freedom, many methods used to develop controllers for simpler robots cannot be applied directly. The reduced model approximation technique discussed in this chapter uses simplified approximations to the full system dynamics in situations where the complexity of the full model would increase

computational cost beyond time and resource limits.

While fully automated techniques for finding reduced approximations to physical systems do exist [James and Fatahalian, 2003], most successful techniques for humanoid robots have relied on human domain knowledge to produce hand designed simplifications. We believe that the extreme dimensionality reduction used to produce realtime controllers requires human insight into precisely which features must be preserved in the simplified model. In particular, Safonova’s work using principal component analysis to find reduced bases for human motion identifies a subspace that preserves the variance in the input motion, but does not identify features important for computing control outputs [Safonova et al., 2004]. When reducing a system to four or fewer dimensions, the distinction between minimizing joint angle reconstruction error and accurately capturing information directly relevant to the control system, like center of mass location, becomes pronounced. Likewise, automated model reduction techniques used for humanoid robots, like the kernel dimension reduction techniques used by Morimoto, require an existing controller to provide information about the subspaces in which control outputs vary [Morimoto et al., 2008]. Because control designers often have no existing control implementation to reference, and reduced models must capture a set of features that suffice to compute stabilizing actions, reduced models and their relationships to the full models that they approximate are often developed through an iterative manual design process.

One approach to generating a simplified model approximation is to explicitly define the reduced model’s dynamics, usually by creating a low-dimensional rigid body model. Additionally, a mapping that captures the designer’s insight into the relationship between the full and reduced models is created. With this approach, updating one model to reflect changes to the other, and ensuring a close dynamic match between the full and reduced models, can be a laborious process because the mapping between models must be updated as well. In practice, when using this approach, we found that the effort required to make changes to the reduced model often precluded extensive experimentation and tuning of that model.

The model reduction techniques we introduce in this chapter automate the process of transforming a designer’s insight into which features of the state and action space of

a model are important for a given task into a functional reduced model approximation.

This chapter reviews the existing literature related to model simplification in humanoid robotics, explains the difficulties that can arise when designing reduced models by hand, presents the automated model reduction techniques we developed to support informed priority control, and finally presents a case study of the design of a reduced model for the bongo-board balance task.

3.1 Related Model Reduction Research

Finding a simplified representation for a system, with many fewer degrees of freedom, is a commonly used technique in both graphics [Safonova et al., 2004, Liu and Popović, 2002] and robotics [Park and Youm, 2007, Golliday and Hemami, 1977]. The degree to which an engineer’s knowledge of the task domain is used to determine the problem decomposition provides a useful metric for categorizing different methods of model reduction used for human figures. The degree to which these methods require human insight ranges from fully automatic decompositions based on the model’s dynamics Yamane [2012], Jain and Liu [2011], or an existing source of example behaviors, through task-specific, hand-designed reduced models intended to capture the designer’s insight into the important features of a particular task. Informed Priority Control defined reduced models in terms of a state reduction function. This state reduction can be defined explicitly by researchers or determined automatically using techniques like modal decomposition. This flexibility allows Informed Priority Control to be used throughout the spectrum of human involvement with the reduced model design process.

Eigenvector decomposition is a fully automated model reduction method that can be used to find reduced representations of linear systems automatically [Simon and Mitter, 1968]. Each eigenvector with a real eigenvalue, and each pair of eigenvectors with complex conjugate eigenvalues represent an independent mode of the system. Energy added to one of these independent modes will not transfer to another mode. Because of this property it is possible to divide the full system into complementary pairs of linear systems by removing eigenvectors or pairs of coupled eigenvectors

without affecting the behavior of the remaining system. However, as a system evolves in time it may pass through larger regions of state space in which its dynamics do not match the linear models and energy transfer between modes that are locally isolated becomes possible. Recent work has shown that modal decomposition can be applied successfully to the control of humanoid characters [Jain and Liu, 2011]. This work re-linearizes the dynamics at iteration of the controller in order to find local modes in the dynamics. Spong’s work using functional Routhian reductions is an extension of this approach to nonlinear model reduction [Gregg and Spong, 2008]. While limited to fully actuated systems, this work allows nearly-cyclic Lagrangian coordinates to be recursively separated from the remainder of the system, producing simplified equivalent systems that capture the unstable dynamics of the original. A survey of additional techniques for computing approximations to linear dynamics based on singular value decomposition and moment matching approaches is provided by [Antoulas et al., 2001].

Our model reduction approach is related to a zero dynamics reductions, which have been applied to bipedal walking [Westervelt et al., 2003]. If the system being approximated has a stable zero dynamics for some non-trivial choice of observation matrix, then the state reduction and action inflation functions used by our model reduction method can be chosen to isolate this zero dynamics and remove it from the system representation.

Research into automated model reduction method for humanoids has employed this eigenvector based approach [Yamane, 2012]. Yamane’s work selects the reduced model dynamics that minimize the kinetic energy difference between the full model system and the system being approximated. This heuristic appears to work well for the standing balance task used as a driving example in the paper. However, we experimented with a similar approach for automatically selecting the basis for a reduced model and found that for the bongo-board task, low inertia modes that did not contribute strongly to the kinetic energy, board angle in particular, were essential for successful reduced model based control.

In graphics, motion editing and optimization in low dimensional spaces are active topics of research. Three automatic dimensionality reduction methods that have been

used successfully in the literature to produce low dimensional spaces that capture the structure of human motions used in specific tasks are Principal Component Analysis (PCA) [Safonova et al., 2004], Multidimensional Scaling (MDS) [Shin and Lee, 2006], and ISOMAP [Jenkins and Matarić, 2004]. In many cases, researchers include some domain knowledge in the reduction by detecting contacts with the environment or tracking important physical quantities such as angular momentum or the character’s center of mass. However, the objective function that these methods attempt to minimize is the difference between a motion capture reference library and the motions that can be expressed in the reduced basis. When building a controller, the reduced model state must be sufficient for computing desired control outputs, an objective that is not necessarily related to accurately reconstructing example motions.

Work using Kernel Dimensionality Reduction [Morimoto et al., 2008] has investigated the automatic generation of reduced representations for a system’s state. This work avoids the need for direct human intervention in the model reduction process by leveraging the behavior of an existing controller. Given a known relationship between state and action, a reduced space that maximally preserves the covariance in that relationship can be found. This provides local subspaces in which a learning algorithm can operate to improve the known policy.

Model reductions based heavily on engineering insight are common in both animation and robotics. Popović and Witkin [1999] suggest a model reduction based on eliminating particular joints by fixing their pose, eliminating entire branches of the kinematic hierarchy using the same method, and enforcing symmetry constraints between the left and right half of the body during some motions. The balance and gait generation strategies described in [Buschmann et al., 2007, Kajita et al., 2003, Rebula et al., 2007, Erbatur and Seven, 2007] illustrate some of the common simplifications used to represent the dynamics of a humanoid biped, including reducing the robot to a single mass without angular momentum, a single mass with an attached flywheel, and a three mass model, where each leg has a mass independent from the body mass. These methods currently appear to be the most popular and successful in developing controllers for humanoid robots.

Another problem, equal in importance to the design of a reduced model, is the

design of the method that projects the full state of the system to and from the reduced state of the model. Often, multiple sensors or actuators are redundant in the reduced model, and this redundancy must be resolved robustly. Even when this situation is not the case, the mapping between state spaces is a non-trivial problem. The state of the reduced model may not be directly computable from current sensor readings, as in the case of foot contact detection, which can require a hysteresis threshold-based state estimator. Likewise, a reduced model with an action space that includes motion of particular points on the robot's body, for example, the hips or the center of mass, may be difficult to map back to the action space of the robot due to redundant or singular kinematic configurations. We have previously explored a situation where torque redundancy, in addition to kinematic redundancy can also challenge the mapping from a reduced model to a full humanoid robot [Anderson et al., 2006].

3.2 Notation

This section introduces the notation we use to represent both the physical model of the robot and its controllers. This notation is used throughout the remainder of the thesis.

3.2.1 System Representation

We represent the position of the robot's joints, the location of the hip, and the state of additional objects like the seesaw or bongo-board using the combined state vector q . The hip's location and orientation are represented using six values that describe a translation and an Euler rotation originating in an inertial reference frame. The contact loads applied to the bottom of each foot are represented using the twelve element vector λ , and the applied joint torques are represented by the torque vector τ . Because we do not need to lift the feet off their support surface, we assume the feet are pinned such that they do not move relative to that surface. The Jacobian of this constraint with respect to q is the matrix \mathbf{J}_c , which is used to express the contact

constraint in the dynamics formulation.

The equations of motion for the robot are

$$\mathbf{J}_c \ddot{q} = -\dot{\mathbf{J}}_c \dot{q}$$

$$\mathbf{M} \ddot{q} + \mathbf{J}_c^T \lambda + \mathbf{S} \tau = RHS(q, \dot{q})$$
(3.1)

or, in matrix notation:

$$\begin{bmatrix} \mathbf{J}_c & 0 & 0 \\ \mathbf{M} & \mathbf{J}_c^T & \mathbf{S} \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \lambda \\ \tau \end{bmatrix} = \begin{bmatrix} -\dot{\mathbf{J}}_c \dot{q} \\ RHS(q, \dot{q}) \end{bmatrix}$$

where \mathbf{M} is the inertia matrix, \mathbf{S} is a selection matrix that adds zeros to τ for the rows corresponding to unactuated degrees of freedom, and RHS is the right hand side force vector representing the gravitational and Coriolis forces.

The seesaw adds two state variables, which represent the angular position and velocity of the board. Twelve constraints are added to the system to prevent the feet from moving relative to the board. The bongo-board adds eight state variables, which represent the linear and angular displacement and velocity of the roller and board. Two constraints are added to prevent the roller from sliding relative to either the ground or the board. Combined with the twelve foot constraints, this design results in fourteen total constraints for the bongo-board model.

3.2.2 Control Representation

We write a policy as a function, $u = P(x)$, of state vector $x \in \mathbb{R}^n$ that produces an action $u \in \mathbb{R}^m$. A controller is a policy $\tau = P(q, \dot{q})$ that takes the current robot state as input and outputs new desired joint torques. Chapter 4 discusses how multiple policies can be combined to produce an aggregate controller.

3.3 Approximation Error in Simplified Models

This section presents examples and analysis of difficulties that can arise during the design of reduced models for humanoid robots. These are the difficulties that the automated model reduction technique described later in this chapter was designed to overcome.

We write the reduction of a model state x as $\hat{x} = R(x)$, where R is a function from \mathbb{R}^n to \mathbb{R}^m where $m < n$. The expansion of the reduced action \hat{u} into a full model action u (typically joint torques) is $u = A(x, \hat{u})$. Note that the mapping between reduced and full model actions is a function of the current full model state as well as the reduced model action. The ideal reduced model dynamics that we wish to approximate is a function \hat{F} , where

$$\dot{\hat{x}} = \hat{F}(\hat{x}, \hat{u})$$

and

$$R\left(\int F(x_0, A(x, \hat{u}(t)))dt\right) = \int \hat{F}(R(x_0), \hat{u}(t))dt \quad (3.2)$$

Most approximate model reductions do not have this property, but will perform well if the difference between the left and right hand sides of equation 3.2 is small. This quantity is small when a trajectory integrated from a state x_0 with control sequence $A(x(t), \hat{u}(t))$, using the full model dynamics, ends at a state x_1 that has the same reduced model representation as a trajectory integrated using the reduced model dynamics starting at $R(x_0)$ with control inputs $\hat{u}(t)$. In general, finding a function \hat{F} that satisfies equation 3.2 is not possible when state variations in the null space of the reduction R have an impact on the dynamics. The model reduction process is essentially a decision to assume that the dynamics of R and its the null space are decoupled. Essentially, we assume a modal decomposition and later weakly enforce that decomposition with a control policy. We call this null space the extrinsic state of the reduced model.

If equation 3.2 is not satisfied then the trajectory of reduced model state predicted by \hat{F} will not match the reduction of the trajectory produced by the full model. This

mismatch can be reduced or eliminated in two ways. First, if the features selected for the reduced model are naturally decoupled from the extrinsic state, then the reduced model will be accurate. This method of producing accurate reduced models is closely related to functional Routhian reduction, as it too depends on identifying symmetries in the Lagrangian.

A concrete example of this type of reduction is a model of the position of the center of mass where the action space fully describes the sum of the contact forces. Regardless of what the other degrees of freedom in the system do, the center of mass acceleration depends only on contact forces. In general the model reduction is accurate when

$$\frac{\partial \hat{F}(R(x), \hat{u})}{\partial \text{null}(R(x))} \quad (3.3)$$

is small. When this quantity is not small, the reduced model dynamics change significantly due to changes in the full model state that are not captured in the reduced model state. We refer to $\text{null}(R(x))$, the full model state not captured by the reduced model state, as the state that is extrinsic to the reduced model.

The second way that the fidelity of the reduced model can be improved is through the active intervention of a controller acting on the full model state. If the reduced model dynamics are sensitive to changes in the extrinsic state, then the reduced model must assume these elements of the state have a particular value. In our automated model generation procedure, the extrinsic state in the reference pose around which the model is constructed is assumed to be constant. If the full-state controller maintains the reduced model's extrinsic state near this assumed reference state, then the reduced model dynamics will be more accurate than if the full model state were allowed to drift from this manifold.

In both cases, the accuracy of the reduced model dynamics depends on our assumption that parts of the full model state not captured in the reduced model state do not affect the evolution of the reduced model state (eq. 3.3). As discussed, this condition that can be true either because the reduced model dynamics truly are symmetric with respect to this extrinsic state, or because the extrinsic state is regulated to remain near the state at which the reduced model implicitly assumes the system

will remain.

3.3.1 Computational Difficulties

Manually designing a reduced model that captures the important features of a more complex model can be a time-consuming process. While the relationship between a model and its simplified approximation may seem intuitively simple, several issues can arise when formalizing this relationship. In particular, while the topological structure of a reduced rigid body model may be easy to synthesize, the model parameters that produce the best dynamic match to the full model can be difficult to determine. Additionally, these parameters may need to be adjusted when the overall controller is altered during development and tuning, requiring the designer to repeat the model-design process many times.

One difficulty is determining the best moment of inertia to use when representing a collection of links with a single mass. The moment of inertia of the collection of links varies with the pose of the robot. Because the reduced model parameters are fixed, it is unclear what moment of inertia for the reduced model mass will best approximate the changing moment it approximates. One possible solution is to compute the moment of inertia of the full model in a specific configuration believed to be most representative of the likely configurations of the system during the given task [Popović and Witkin, 1999].

During development of a controller, the robot's behavior is constantly changing. Because the reduced model reflects assumptions about this behavior, parameters computed early in the development process may need to be recomputed several times. For example, if the body's default pose is changed, the moments of inertia of the reduced bodies will need to be recomputed to reflect this new configuration. Likewise, choices of link lengths and center of mass locations in the reduced model depend on the behavior of the full model controller. If these parameters are not automatically generated, re-deriving the reduced model parameters while refining the controller's behavior is prohibitively time consuming.

3.3.2 Selecting Features

If a reduced model does not capture the important dynamics of the full system, it is unlikely that a controller based on that reduced model will succeed in stabilizing the full system. Carefully considering the unstable modes of the full model, and ensuring that the reduced model design captures those modes, is essential to the reduced model design process. When the system has stable unconstrained eigenmodes, reductions can be made without altering the accuracy of the reduced model by eliminating those modes.

3.3.3 Selecting Benign Actions

Another consideration in reduced model design is that the reduced model controller must avoid selecting reduced model actions that cannot be achieved accurately by the full model. An instance of this problem, that we encountered repeatedly, occurs when using a single free mass as the reduced model of the robot's entire body. This reduced model allows the linear and angular momentum of the system to vary independently, and completely captures the important constraints on viable ground reaction forces. Because ground reaction force limits are the only constraints expected to be encountered during standing balance, a designer might reasonably decide to use this model reduction for such a task.

However, producing benign full model behavior requires that the linear and angular momentum vary along a fairly restricted subspace of the available reduced model motions. For example, in the sagittal plane, significant mass is moved by rotations about the ankles and hips. Changes in the velocity of these joints span the space of changes in angular momentum and lateral linear momentum. However, both joints couple positive changes in linear momentum to positive changes in angular momentum. More precisely, the Jacobian relating changes in momentum to changes in joint velocity, has a small determinant. A reduced model motion in which the changes in angular and linear momentum have opposite sign will result in a full-body motion with large changes in hip and ankle velocity.

An simple example of this effect occurs if a single mass is used as the reduced model

approximating a two-link pendulum. A single mass is a common choice for reduced model because it captures total system momentum [Macchietto et al., 2009][Stephens, 2011]. The two link pendulum is intended as a simple analog for a more complex model of a humanoid that still captures some of the behaviors not represented well in the single mass model. The single mass model is chosen for this example because it exhibits surprisingly poor performance for reasons that may not be immediately apparent. The example illustrates why a control architecture designed to preserve flexibility in the choice of reduced model is useful when experimentation with the reduced representation becomes necessary.

In our example, the lumped mass is free to translate horizontally and rotate about its center of mass. At the reference pose shown in figure 3.3 the relationship between joint velocity and reduced model velocity is

$$\begin{bmatrix} \rho \\ L \end{bmatrix} = \begin{bmatrix} 2LM & \frac{LM}{2} \\ ML^2 & \frac{ML^2}{2} \end{bmatrix} \ddot{q} \quad (3.4)$$

When the pendulum links have mass M and length L , and the mass of each link is concentrated at a point located at $L/2$.

The magnitude of the pendulum's joint acceleration varies significantly over the set of lumped mass accelerations of unit magnitude. For example, a momentum change of $[LM, ML^2]^T$ requires a joint acceleration of $[0, 2ML^2]$, while a second momentum change with the same magnitude, $[LM, -ML^2]^T$, requires a much larger joint acceleration change of $[2LM, -6ML^2]$. This result illustrates why, when using reduced models in an optimal control context, it is important that objective functions reflect the mapping between the reduced model and the full model. An objective function that minimizes only reduced model acceleration without regard to the resulting full model acceleration may result in behaviors that include large joint accelerations in the full model. Additionally, because the relationship between joint accelerations and reduced model action is, in practice, highly non-linear as joints approach kinematic singularities, a constant quadratic cost function applied to reduced model actions is often insufficient to avoid large joint accelerations.

This problem is resolved as a side effect of our automatic model reduction formulation. In our reduction framework, the designer specifies the action space in terms of a set of full model actions, rather than reduced model actions. Additionally, because the full model cost functions are used to compute the reduced model cost function at the same time that the dynamics are reduced, the full model cost of performing a specific combination of actions is accurately captured. Section 3.6 discusses how the reduced action space and cost function are computed.

3.4 Automated Model Reduction

In this section, we introduce a procedure for generating reduced models automatically based on a set of features and actions defined with respect to the full model. By automatically recomputing the reduced model dynamics whenever a low-level control gain is updated, this technique makes possible the informed priority approach described in section 4.5.

Many model reduction techniques begin by defining a reduced model’s dynamics, then developing techniques for mapping states and actions between the reduced model and the full model. Our earlier work used these techniques extensively [Anderson and Hodgins, 2010]. In contrast, our automated model reduction technique does not require that the dynamics of the reduced model be developed explicitly. Instead, we begin with a set of features defined in terms of the full model state, then derive a set of differential equations that define the uncontrolled behavior of the reduced model. The reduced model uses that feature set as its state vector. The action component of the model describes how control inputs affect the system. It is defined by a mapping from a small set of control inputs to actions applied to the full model. The reduced model approximations to those actions are derived from the full model. Additionally, full model constraints and cost functions are simultaneously mapped into the space of the reduced model. Figure 3.1 illustrates the differences between these processes.

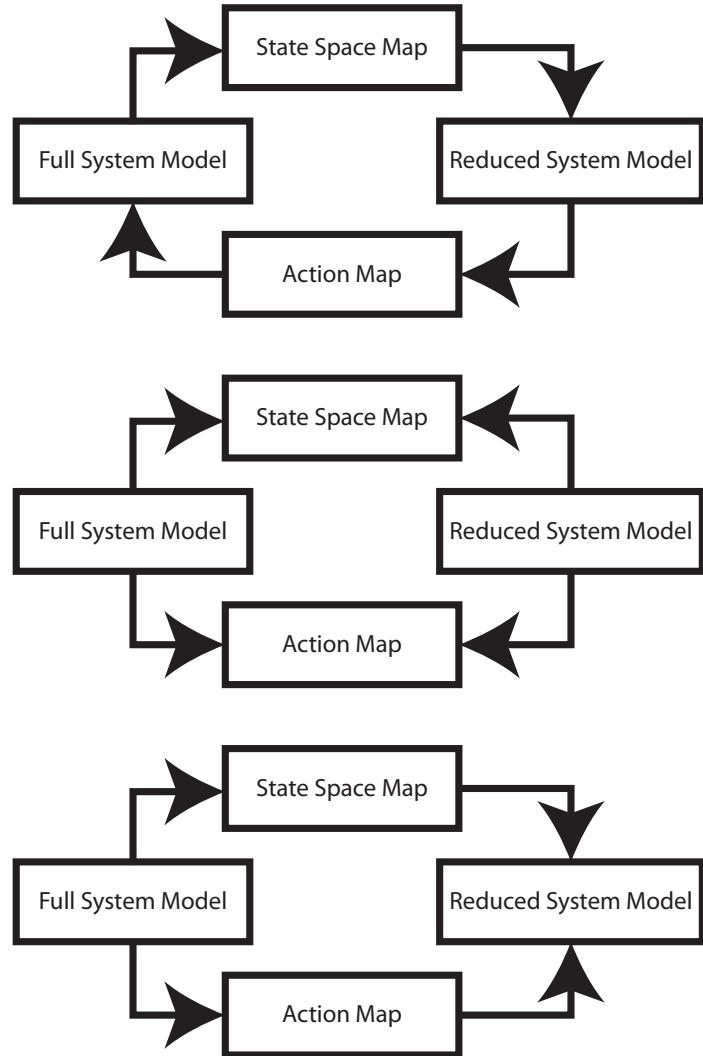


Figure 3.1: Top: Dataflow for a reduced model. The full model state is mapped into a reduced model state. Then, the reduced model state is used to generate a reduced model control output, which is then mapped to the full model's action space. Middle: Dependencies in the traditional reduced model design process. The full and reduced models are generated independently, and the state and action space mappings are then designed to map between these two models. If either changes, the mappings must be regenerated. Bottom: Dependencies in our reduced model design process. The state reduction and action expansion depend only on the full model. The reduced model is automatically generated from the state reduction and action expansion functions in combination with the full model.

3.5 Automatic Generation of Linear Models

We developed a method to automatically generate the forward dynamics of reduced models, based on the dynamic model of the full system. This method extends the finite differencing technique used to build linear models of the full system dynamics around a particular point in state space. Given a nonlinear dynamic model of the full system, $\dot{x} = F(x, u)$, with additional constraints $c_{eq}(x, u) = 0$ and $c_{in}(x, u) > 0$, we can build a discrete time linear approximation to that system:

$$\begin{aligned} x_{t+1} &= \mathbf{A}x_t + \mathbf{B}u_t \\ 0 &= \mathbf{C}_{eq} \begin{bmatrix} x & u \end{bmatrix}^\top + c_{eq}(x, u) \\ 0 &< \mathbf{C}_{in} \begin{bmatrix} x & u \end{bmatrix}^\top + c_{in}(x, u) \end{aligned}$$

using the well-known finite differencing technique:

$$\begin{aligned} \mathbf{A} &= \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \\ \mathbf{B} &= \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_m \end{bmatrix} \\ \mathbf{a}_i &= \int_{t=0}^{t_{step}} \frac{F(x + \epsilon_i, u) - F(x - \epsilon_i, u)}{2|\epsilon|} dt \\ \mathbf{b}_j &= \int_{t=0}^{t_{step}} \frac{F(x, u + \epsilon_j) - F(x, u - \epsilon_j)}{2|\epsilon|} dt \end{aligned}$$

Similarly, for the constraint matrices:

$$\begin{aligned} \mathbf{C} &= [\mathbf{C}_x \mathbf{C}_u] \\ \mathbf{C}_x &= \begin{bmatrix} \mathbf{c}_{x,1} & \cdots & \mathbf{c}_{x,n} \end{bmatrix} \\ \mathbf{C}_u &= \begin{bmatrix} \mathbf{c}_{u,1} & \cdots & \mathbf{c}_{u,m} \end{bmatrix} \\ \mathbf{c}_{x,i} &= \int_{t=0}^{t_{step}} \frac{c(x + \epsilon_i, u) - c(x - \epsilon_i, u)}{2|\epsilon|} dt \\ \mathbf{c}_{u,j} &= \int_{t=0}^{t_{step}} \frac{c(x, u + \epsilon_j) - c(x, u - \epsilon_j)}{2|\epsilon|} dt \end{aligned}$$

If the constraints limit the possible states of the system, as in the case of kinematic constraints, then the finite difference method above will attempt to compute $F(x, u)$ in a state that violates those constraints for some $x_{ref} + \epsilon_i$. When this situation occurs $F(x, u)$ is either undefined or incorrect, depending on whether the dynamics can be integrated from an initial state that violates the constraints. In either case, the finite differencing step cannot be performed directly. Instead, we find an approximate solution by altering the state offset, $x + \epsilon$, to satisfy the constraints. We choose the minimum norm change to the offset pose that satisfies the kinematic constraints.

$$\operatorname{argmin}_{\hat{x}} \|x_{ref} + \epsilon_i - \hat{x}\|, c_{eq}(\hat{x}, u) = 0, c_{in}(\hat{x}, u) < 0$$

Unfortunately, this technique can introduce significant error in the resulting linear model if the difference between \hat{x} and x_{ref} is significant. The extended technique described below resolves this issue in the case where the dimensionality of the reduced model is significantly less than the full model.

3.6 Automatic Generation of Reduced Models

We extended this method to the production of reduced linear approximations. Generating the reduced model requires additional design inputs. These inputs are a set of features defined in terms of the full model state and a set of action primitives expressed in terms of the full model's action vector.

3.6.1 Linear Models

The method we use to compute reduced model approximations integrates the full model dynamics but computes finite differences in terms of reduced model coordinates. Because the initial state offsets are expressed in the reduced model's coordinates, (\hat{x}, \hat{u}) , but the integrator requires an initial state and action in full model coordinates, (x, u) , an inverse of the state reduction function R is needed. Figure 3.2 illustrates this process.

Because the inverse of R is always underdetermined a pseudo-inverse is computed

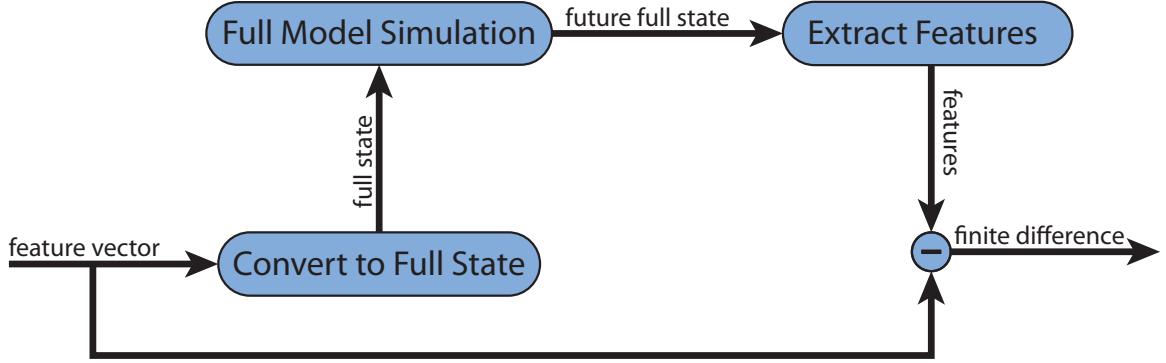


Figure 3.2: Alterations to finite difference for model reduction

instead. This inverse must have the property that for a given reduced model state, \hat{x} , it will produce a unique full model state x such that $R(x) = \hat{x}$. We used a simplex optimization technique searching over the full model space and initialized at the reference pose. This optimization procedure searched for a full model state x that produced a local minimum in a cost function composed from the difference between a desired reduced model state \hat{x} and $R(x)$ and the difference between x and the reference full body pose x_{ref} . The optimization process was also required to satisfy any kinematic constraints (e.g. foot placement) that were active. We found that this approach was numerically more stable than enforcing $R(x) = \hat{x}$ as a hard constraint.

The equations below introduce the feature inflation function inf , which computes the result of this optimization process, and define how the normal finite differencing procedure above is modified to produce linear reduced model dynamics:

$$inf(\hat{x}) = \underset{x}{\operatorname{argmin}} [|\hat{x} - R(x)| + \omega |x_{ref} - x|], \omega \ll 1$$

$$act(\hat{u}) = \mathbf{U}\hat{u}$$

$$\mathbf{a}_i = \int_{t=0}^{t_{step}} \frac{F(inf(\epsilon_i), A(x_{ref}, \hat{u}_{ref})) - F(inf(-\epsilon_i), A(x_{ref}, \hat{u}_{ref}))}{2|\epsilon|} dt$$

$$\mathbf{b}_j = \int_{t=0}^{t_{step}} \frac{F(x_{ref}, A(x_{ref}, \epsilon_j)) - F(x_{ref}, A(x_{ref}, -\epsilon_j))}{2|\epsilon|} dt$$

Similarly, a linear approximation of the constraint functions, defined in terms of

reduced model features and actions can be derived:

$$\hat{\mathbf{c}}_{x,i} = \frac{c(\inf(\epsilon_i), A(x_{ref}, \hat{u}_{ref})) - c(\inf(\epsilon_i), A(x_{ref}, \hat{u}_{ref}))}{2|\epsilon|}$$

$$\hat{\mathbf{c}}_{u,j} = \frac{c(x_{ref}, A(x_{ref}, \hat{u}_{ref} + \epsilon_i)) - c(x_{ref}, A(x_{ref}, \hat{u}_{ref} - \epsilon_j))}{2|\epsilon|}$$

Finally, the quadratic cost functions for states and actions, \mathbf{Q} and \mathbf{R} , can be expressed in terms of the reduced model using the same technique:

$$\hat{\mathbf{q}}_i = \mathbf{Q} \frac{\inf(\epsilon_i) - \inf(-\epsilon_i)}{2|\epsilon|}$$

$$\hat{\mathbf{r}}_j = \mathbf{R} \frac{A(x_{ref}, \epsilon_j) - A(x_{ref}, -\epsilon_j)}{2|\epsilon|}$$

Deriving the constraints in this fashion has the advantage that the error in the local model of the constraints is bounded if the full system remains in the neighborhood of x_{ref} . This bound holds because the model reduction is taken with respect to a particular state of the full model. In many reduced model formulations, the reduced model is not tied to a particular state of the full model. If the reduced model is not defined with respect to a particular state of the full system then it is not possible, in general, to define a model of the constraints in terms of the reduced state and action with bounded error.

3.6.2 Nonlinear Models

While a particular linear model must be tied to a single reference state, it is possible to derive multiple linear models, each corresponding to a particular reference state. In applications where the additional time required to compute additional models is allowable, the model computation can be carried out on the fly whenever a model derivative at a given point is required.

We implemented nonlinear reduced models by computing a new linear approximation as needed for each reduced state \hat{x} . For example, inside a receding horizon

control trajectory optimization loop, we derived a new linear model at each collocation point of the trajectory during each major iteration of the sequential quadratic programming optimizer. This process is computationally intensive and inappropriate for real-time control, but in simulation it can provide a useful point of reference for comparing performance against a single linear approximation.

We also implemented a more computationally efficient approximation to the full nonlinear reduced dynamics. This approximation accumulated a set of linear models at many points in state space, using locally weighted linear regression to interpolate between them, producing an approximation to the linear approximation to the full model at x , \tilde{F} . Models were added to the set between control runs. All points at which models had been built in the previous run were considered candidates for addition to the existing set of models. We defined an error threshold ϵ in terms of the norm of the difference between the true linear approximation at a point and the linear approximation reconstructed using locally weighted linear regression. For all such points x where $\|\hat{F}(x) - \tilde{F}(x)\| > \epsilon$ we added $\hat{F}(x)$ to the set of linear approximations used in the next run. This technique avoided the need to compute linear approximations in the inner loop of the simulation and eventually converged to a stable set of linear approximations that produced bounded approximation error for the particular controller and start conditions used in our experiments.

In addition to the methods we experimented with, it is also possible to compute reduced model dynamics by first constructing a linear approximation to the full model, then computing the Jacobian of $R(x)$ at x_{ref} , \mathbf{J}_r , and projecting the linearized full model dynamics through this Jacobian.

$$\hat{\mathbf{A}} = \mathbf{J}_r^\top \mathbf{A} \mathbf{J}_r$$

However, our technique for directly constructing the entries in the reduced model forward dynamics matrices has two advantages. First, it minimizes the number of expensive forward simulation operations that need to be performed to build the model. When directly constructing $\hat{\mathbf{A}}$, the number of simulated forward steps is proportional to the size of the reduced model state, rather than the full model state. Second, the

region over which the linear approximation error remains below a given threshold is often significantly larger when using the second method because the simulations can be started well outside the region where $R(x)$'s first order approximation is accurate. This improvement is enhanced when non-linear kinematic contact constraints are active, which the *inf* function captures, and the projection through \mathbf{J}_r cannot. Finally, and most significantly, the sum of the number of features in $R(x)$ and the number of constraints is typically less than the number of degrees of freedom in the full model. This inequality allows the forward simulation to begin from states that preserve the full model constraints without altering the value of $R(x)$, as would be necessary if the additional degrees of freedom did not exist.

Additionally, in our experiments the features chosen for $R(x)$ tended to have dynamics that could be more closely approximated by a linear model than the dynamics defined in terms of joint angles. That is, $F(x)$ had stronger nonlinearities than $\hat{F}(x)$ over the set of states encountered. This outcome is a result of selecting features such as center of mass position, that have relatively small nonlinear terms in their dynamics, rather than an inherent feature of our extension to the finite differencing algorithm.

Example

As a concrete example, consider developing a reduced model based on the assumption that the sagittal plane dynamics of a standing humanoid are well approximated by a single rigid body that is free to translate horizontally and rotate. A natural choice for the mass and moment of inertia of that single rigid body would be to match the humanoid's mass and moment of inertia in the expected rest-stance pose. Given this reduced model the designer would then define a task-specific function mapping the full model state to the reduced model state. One part of this mapping, linear motion of the center of mass, is well defined: the reduced model's center of mass would naturally be positioned to match the humanoid's. However, the mapping between humanoid body pose and the rotation of the rigid body is less clear. For example, simultaneously matching the angular momentum about a point on the body and the

angle of a specific link on the humanoid is not possible in general. Once a state mapping had been chosen, an action mapping would be introduced to map lumped mass accelerations to robot torques. One choice would be to constrain the sum of the foot contact forces to match the ground reaction force resulting from the acceleration in the lumped mass model.

By contrast, our method requires only that the designer define relevant features of the robot's state and an action basis. For this example, state features might be the center of mass translation and torso inclination, while the action basis could be symmetric motion about the ankles and the hips. Once a reference pose is chosen the automatic differentiation techniques described in this section would produce a linear model of the dynamics of the state features, given desired ankle and hip positions as control inputs. This linear model avoids several ambiguities and possible sources of error in the earlier method.

By automating the production of reduced models, we allow the designer to focus on the problem of identifying important features of the state. This automation removes the need to re-define the reduced model or its mapping when other control variables, such as the reference posture, are changed. Additionally, it is based on the full dynamic model, and includes effects that the designer may neglect, such as the torques produced by a whole-body moment of inertia not aligned with the global axes. Choosing an action basis in the space of the full model, rather than the reduced model, avoids choosing reduced model actions that are undesirable in the full model space. For example, combinations of linear and rotational accelerations with a cross product with a negative (down-facing) Z component require large joint accelerations to produce similar momentum changes in the full model, as described in section 3.3.3 of this chapter. This effect occurs because the lower body must rotate counter to the desired change in angular momentum in order to accelerate the center of mass in the desired direction. To achieve the desired change in angular momentum the upper body must accelerate sharply in the direction opposite the lower body. Figure 3.3 illustrates this situation.

3.6.3 Relation to Generalized Coordinates and Lagrangian Dynamics

The dimensionality reduction method we described above has a natural expression in terms of generalized coordinates and constrained Lagrangian dynamics. The reduced state vector \hat{x} can be seen as a partial set of generalized coordinates that, when combined with a second set of coordinates, fully specifies the system's state. That second set of generalized coordinates must span the null space of $R(x)$, and may be poorly behaved in cases where that space is not connected or continuous. In this formalism, the assumption that the system holds a specific pose in the null space of R can be expressed as a set of constraints on the derivatives of the undefined generalized coordinates.

$$\frac{\partial z_i}{\partial t} = 0$$

where z_i is the i th undefined generalized coordinate.

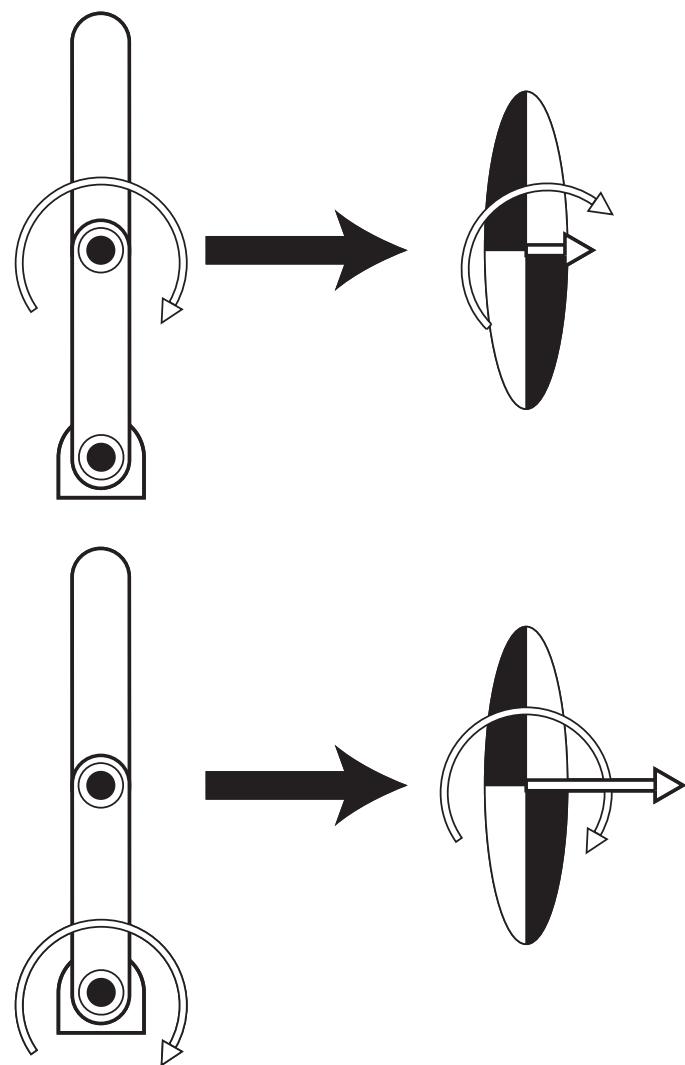


Figure 3.3: Resulting lumped-mass accelerations for two unit pendulum accelerations

3.7 Bongo-Board Reduced Model Design

This section discusses the design of the reduced model used for the bongo-board task. Our primary goal was to capture the essential dynamics with as few state variables as possible. We tested three different reduced models, illustrated in figure 3.4. Table 3.1 shows which state variables were included in each model. In practice, all of these models were sufficient to produce a simulated balance controller for the full system, and ultimately we used the fixed-body model because it had the fewest degrees of freedom. Therefore we chose that model not because the other models were computationally intractable, but because it had fewer parameters to fit and was less susceptible to over-fitting with sparse training data.

We observed two phenomena when humans balanced on the bongo-board that we believed were important to capture in our reduced model and action space. The first of these phenomena was that humans tended to keep their heads nearly stationary while balancing and driving the roller in a side to side oscillation. The second phenomenon was the ability to alter the angle of the bongo-board in space quickly, without significant changes to the total system momentum.

The fixed-body model is able to reproduce both these aspects of human behavior. Analysis of a linear approximation to the fixed-body model reveals that the system has two real, and two conjugate imaginary eigenvectors. Oscillation with a stable head position results from the kinematics of the non-real eigenmode. Figure 3.5 illustrates how the kinematics of the bongo-board produce a motion that allows a particular point in the body frame to remain fixed in space while the rest of the body rotates

Table 3.1: Reduced Models

	2-link	Free body	Fixed Body
Roller Position	X	X	X
Board Angle	X	X	
CoM Position		X	X
CoM Rotation		X	
Pendulum Angles	X		

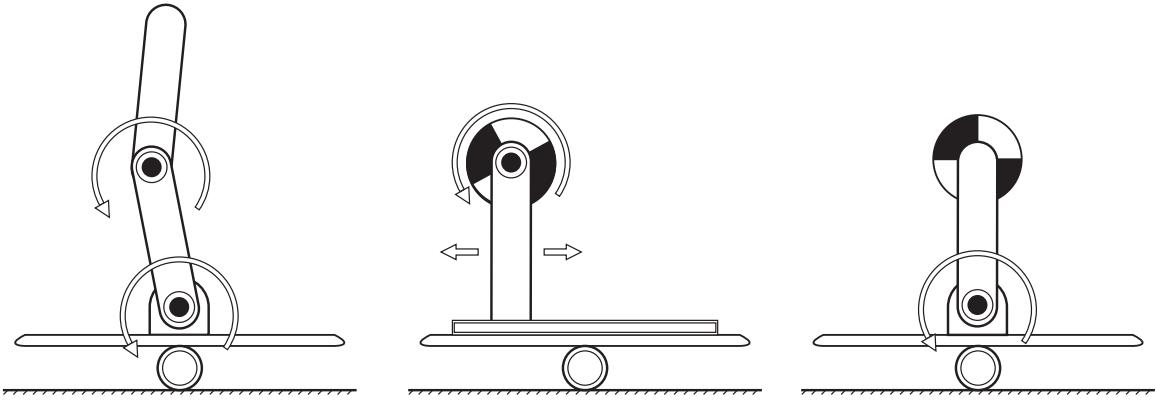


Figure 3.4: Reduced Models of the Bongo-Board. 2-link pendulum (left), free body (middle), and fixed body (right)

about that point. The height of this point varies with the ratio of the body's mass to its angular inertia. As the angular inertia of the system increases the fixed point moves upwards.

The angle of the board relative to the body is not explicitly represented in the fixed-body reduced model. Instead, it is assumed that the system can alter the body-relative board angle rapidly, without disturbing the reduced model dynamics. This assumption is supported by analysis of the eigenmodes of the full model of the system. That analysis reveals a low-inertia mode that rotates the board without significantly moving the center of mass or the roller. Figure 3.6 illustrates this motion in simulation.

The feature vector used to compute the automatic model reduction was the roller position and the lateral center of mass position. These two quantities are sufficient to capture the important dynamics of the bongo-board task, as long as the body does not move significantly from the reference pose.

Each of the four eigenmodes of the linear approximation to the fixed-body model is illustrated in figure 3.7 and given numerically in table 3.2. Of the two real valued modes of the system, only one is unstable. Because the imaginary mode is also stable, only the real unstable mode of the system needs to be actively stabilized.

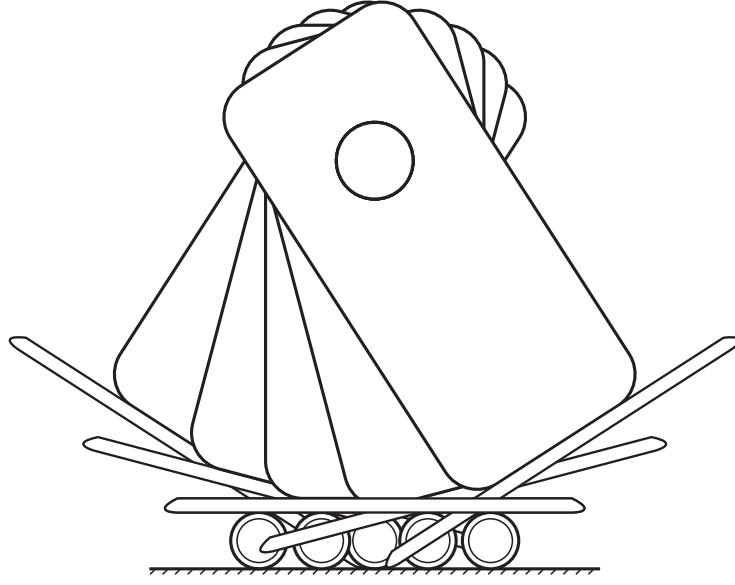


Figure 3.5: For any displacement vector with nonzero board rotation, a single point in the body's inertial frame is stationary as the bongo-board moves

3.7.1 Action Space Selection

We experimented with several options for the action space that reflected different combinations of motions selected from the eigenmodes of the system. We found that system performance depended almost entirely on the inclusion of motions along the state vector used to generate the posture displacement illustrated in figure 3.6 and, in the final controller, chose to include only this action for most trials.

The eigenvectors were computed from the constraint Jacobian J_c and the mass

Table 3.2: Bongo-board Eigenvectors

	Unstable Real Mode	Oscillating Mode	Stable Real Mode
Eigenvalue	1.38	$0.90 \pm 0.22i$	0.72
Roller Position	-0.08	$-0.01 \pm 0.22i$	0.09
Roller Relative CoM Position	0.28	0 ± 0.10	-0.27
Roller Velocity	-0.27	0.87	-0.28
Roller Relative CoM Velocity	0.91	-0.40 ± 0.02	0.91

matrix M at the reference pose. Ignoring right hand side forces, we write the equations of motion:

$$\begin{bmatrix} M & J_c^\top \\ J_c & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \lambda \end{bmatrix} = -\tau$$

The left hand side inverse dynamics matrix is inverted using singular value decomposition to find the forward dynamics matrix. The basis vectors for the action space are selected from the eigenvectors of that forward dynamics matrix.

We used the eigenvectors of the linearized dynamics at the reference pose as the action space basis for two reasons. First, because the joint torques required to produce an acceleration along each eigenmode are orthogonal, the torque magnitude required to produce an acceleration that is a linear combination of two eigenmodes grows more slowly than the magnitude of the torque components required to produce each acceleration component. Figure 3.8 illustrates this effect. Second, because the resulting accelerations are also orthogonal the total acceleration magnitude is well behaved in the same manner as the torques. Choosing an action basis in which either the torques or the accelerations are non-orthogonal can result in either large joint accelerations or large torques in the full model. This allows a diagonal action cost matrix to approximate the full model joint torque cost in terms of reduced model actions, because there are no linear interactions between the reduced model actions when expanded to the full model space.

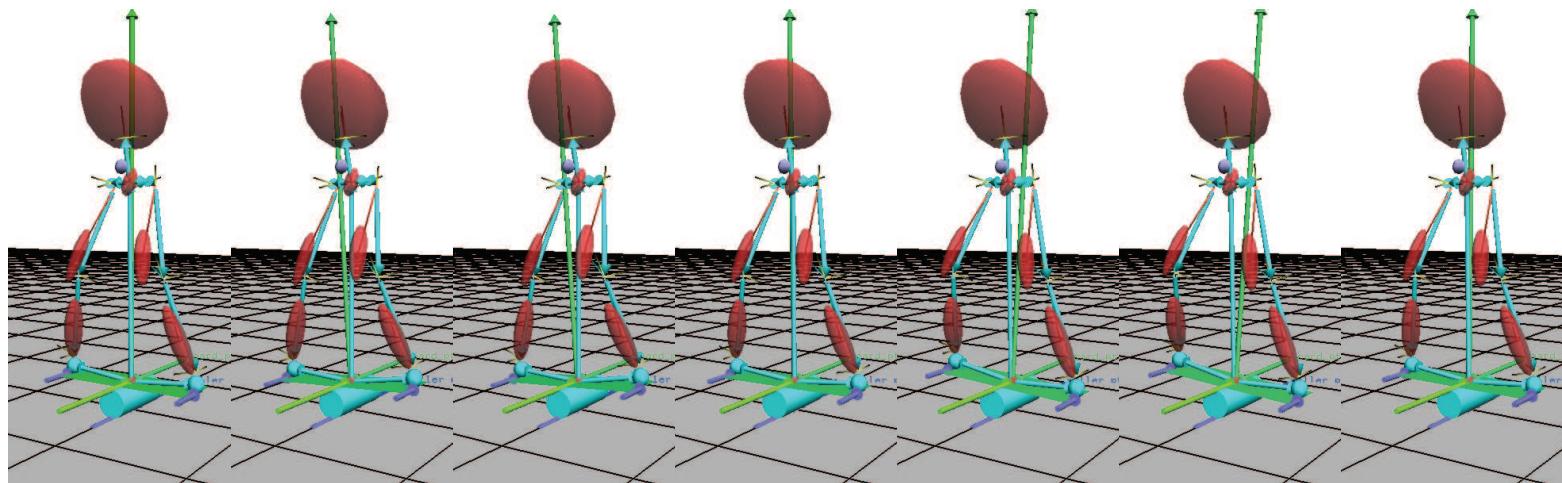


Figure 3.6: Poses from the system eigenmode corresponding to board rotation without significant mass displacement. Note that the vector drawn normal to the board surface moves first to the left and then to the right of the hip center as the board rotates under the robot.

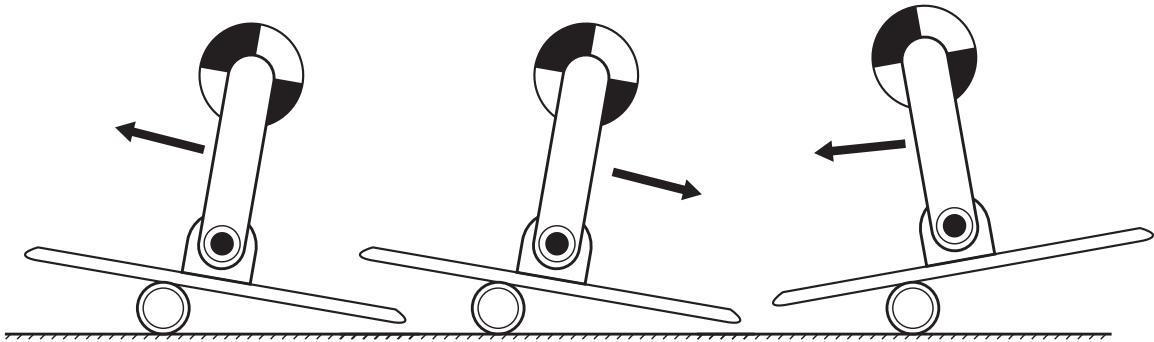


Figure 3.7: The four eigenvectors of the uncontrolled fixed-body bongo-board model. The leftmost figure is the stable real eigenvector, corresponding to a motion that results in the system at rest. The middle figure illustrates is the unstable real eigenvector, which quickly leads to failure. The final figure illustrates the pair of complex eigenvectors, which correspond to a damped oscillation ending at the rest pose.

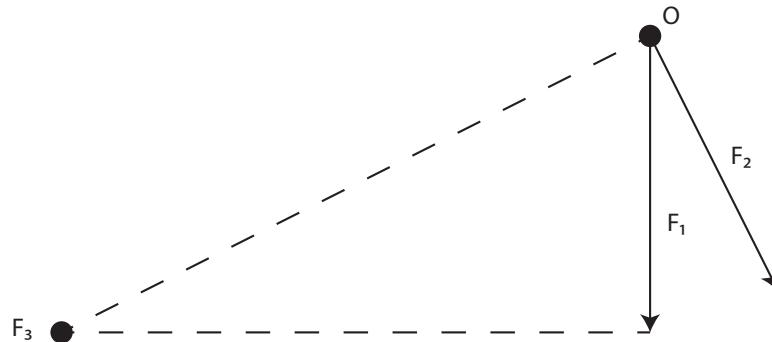


Figure 3.8: If the torque vectors required to produce two base accelerations are not orthogonal, a situation analogous to that illustrated above can occur. Here, F_1 and F_2 are the two non-orthogonal torque vectors that produce unit accelerations along the selected action bases. Selecting a desired acceleration along only the first action basis results in a large increase in the resulting torque magnitude if the second component must remain at zero.

Chapter 4

Controller Architecture

Introduction

Dividing a difficult control problem into sub-problems that can be solved independently is a common strategy when designing controllers for humanoid robots. This strategy is effective when the sum of the computational costs of the sub-problems is significantly less than that of the original problem, and the problem can be decomposed into sub-problems that are not strongly coupled. The first section of this chapter introduces a classification of control architectures that use this strategy. The remainder of the chapter describes the design and implementation of our policy mixing and informed priority control architectures. The specific implementations of the controller were designed to perform the seesaw balance and bongo-board tasks.

Architectures for software systems are described in terms of components, connectors, and data [Fielding, 2000]. Control architectures, however, represent more abstract mathematical relationships between functions mapping states to actions. While the choice of control architecture and software architecture are coupled, the choice of one does not fully determine the other. Consider, for example, the null-space control design. As illustrated in figure 4.1, sub-policies can be combined into chains running from high-level to low-level policies or from low-level to high-level policies, or their outputs can all be fed into a single mixing function. Each of these possible software architectures implements the same control architecture in that for the

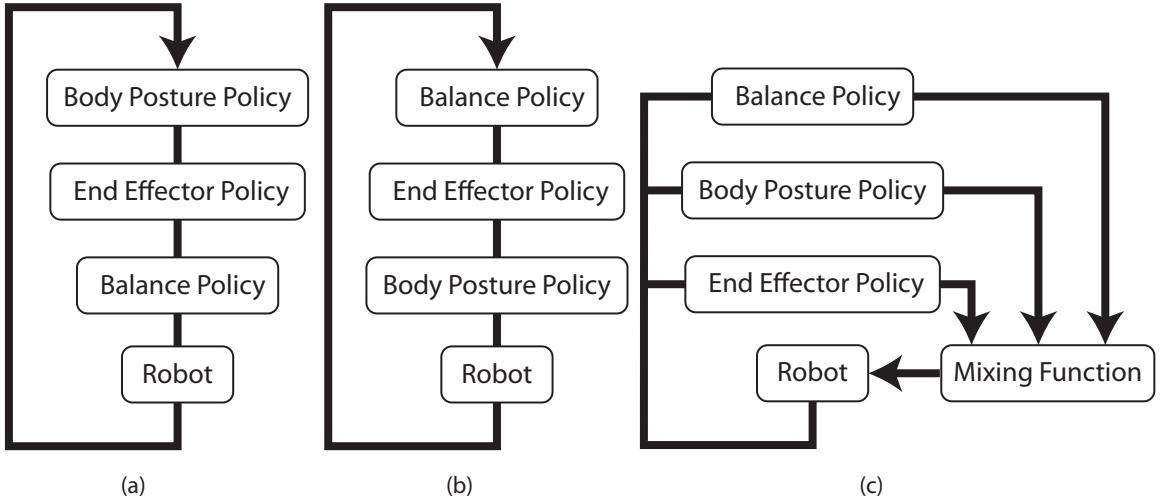


Figure 4.1: Three possible software architectures that could be used to implement a hypothetical null-space controller. Diagram (a) shows a controller in which sub-policies receive a control signal from lower priority policies and must augment this signal with their own output. Diagram (b) shows a controller where sub-policies receive the desired output of higher priority policies, and must constrain their own action so as not to alter this output. Diagram (c) show a controller where the output of each sub-policy is combined according to the null-space priority rules by a mixing function.

same sub-controllers, the resulting aggregate controller behaves identically. While it is often tempting to classify control architectures in terms of the structure of the software architectures typically used to implement them, this tendency obscures important features of the control architecture by focusing on the features of the software architecture.

We classify control architectures based on the structure and type of dependencies between sub-policies. The structure of dependencies between sub-policies is limited to a small set of possible relationships. A pair of sub-policies may be entirely independent of each other, meaning that a change to one policy will not alter the run-time behavior of the other. Alternately, they may have a directional dependence. When a directional dependence exists altering the independent policy will alter the behavior of the dependent policy, but not vice-versa. Logically a final class of sub-policies with bidirectional dependence exists, but it is unclear in what sense two sub-policies

Table 4.1: Instances of categories of sub-policy relationships

Controller	Control signal	System model
Virtual model	Independent	Full dependency
Trajectory tracking ZMP	Directional Dependency	Full dependency
Priority null space	Directional dependency	Independent
Informed priority	Directional dependency	Directional dependency
Policy mixing	Independent	Full dependency
Modal control	Independent	Independent

are distinct if their outputs are co-dependent. We choose to identify groups of co-dependent policies as a single sub-policy.

In addition to the structure of dependencies within a control architecture, the type of information transfer that creates those dependencies is also useful for classification. The two types of information we consider are control signals and models. These types are elements of the more general categories of run-time data and system configuration data. To summarize, we classify control architectures based on whether sub-policies are independent or have one-way dependency relationships, and whether those dependencies are based on models of sub-policy behavior that can be generated prior to execution, or on control signals that are generated during execution. Table 4.1 clarifies these possibilities with specific instances of each type of structure.

Control architectures with control signal (or runtime) independence combine the independently generated outputs from several policies to produce a single combined output, and can be written, in general as $P(x) = M(p_1(x), p_2(x), \dots, p_i(x))$, where p_1 through p_i are the individual sub-policies and M is a mixing function that combines their individual outputs into a single action. Typically, the output of each sub-policy has lower dimensionality than $P(x)$, while the sum of the sub-policy output dimensions exceeds the dimensionality of $P(x)$. These methods can be further classified by the mixing function used to combine the sub-policy outputs. The simplest mixing functions are superposition methods that combine policies by taking the sum of their outputs. This method is effective when the policies are designed to be compatible in this fashion [Stephens and Atkeson, 2010], but is not well suiting to tasks with

multiple competing objectives. Hierarchical methods based on null space projection or inequality constraints can resolve conflicts between policies when a clear priority ordering exists [Saab et al., 2011]. Mixing methods can be used to combine policies when priority orderings are not clear or vary continuously [Anderson and Hodgins, 2010]. Finally, switching methods that select from one of several possible control signals, such as state machines, are often used when the system passes through distinct phases in which different policies are appropriate [Raibert, 1986].

In contrast to methods with control signal independence, a second class of methods, which we call cascade methods, use the control output of one policy as the control input to another. Although any directed acyclic graph of dependency relationships is possible, we are aware only of instances where the dependency relationships form a single chain. This single-chain control architecture can be expressed as $P(x) = u_1(x)$ where $u_n(x) = p_j(x, u_{j+1}(x)) \forall j < i$ and $u_i(x) = p_i(x)$. Here, we refer to $u_1(x)$ as the lowest level sub-policy, and $u_n(x)$ as the highest level control policy. Perhaps the most familiar instances of this structure are trajectory tracking implementations where a high level controller or design process produces a system trajectory, and a low level controller follows that trajectory [Park and Youm, 2007] [Westervelt et al., 2003].

The control signal independence of hierarchical methods requires further elaboration. Depending on how sub-policies are defined, it is possible to imagine equivalent systems in which the control signals have directional dependence, or are independent. If the sub-policies themselves compute the action space available to policies with lower priority, then a directional dependence exists in the control signal. However, an equivalent formulation is to use a mixing function supplied with the desired action of each sub-policy to compute the output torques. In this case, the control architecture includes an unlimited number of independent sub-policies and a single mixing function that combines the output of the sub-policies. If the mixing function is viewed as an additional sub-policy then these architectures are a sub-set of the set of cascade architectures. We choose to view hierarchical methods as belonging to the class of control architectures with control signal independence because this class is the more limited set.

The dependence of sub-policy behavior on the offline configuration of other sub-policies is a less common method for distinguishing control architectures. Very few situations exist where significant changes in the behavior of one sub-policy require no modification to any other policy, but typically these modifications are manual adjustments made by the control engineer. One common example of this type of manual intervention occurs when the feedback gains used by a trajectory tracking controller are altered. When this alteration happens the objective function used to design the trajectories fed to that tracker may need to be updated to reflect the new capabilities of the tracker. The costs of the trajectory’s acceleration and curvature keep the system within the envelope where the trajectory tracker can accurately follow the trajectory. For the trajectory optimizer, the cost function serves as an implicit model, informing it about the expected behavior of the trajectory tracker. If the tracker changes significantly, the parameters associated with its implicit model may need to be manually updated to reflect the change.

In most systems these dependencies are understood by the designer but not explicitly represented in the control architecture. Informed priority control (Section 4.5, [Anderson and Hodges, 2011]) is an example of a control architecture that explicitly represents these dependencies. This explicit representation allows the output of sub-policies to change automatically when the offline configurations of the sub-policies they depend on are changed.

We believe that including directional dependence on offline configuration changes in the control architecture is important. Without a way to capture these relationships automatically, designers must either manually maintain the dependencies between sub-policies, typically a time consuming and error prone process, or find ways to reduce the interdependence of the sub-policies. The belief that reducing the interdependence between sub-policies is desirable has been implicit in much existing research in humanoid control architectures. For example, null space, zero-dynamics, modal control, and functional Routhian reductions attempt to make the dynamic system controlled by a sub-policy independent from the rest of the system.

By designing each sub-policy such that it operates in a space orthogonal to the other sub-policies in the system, interaction between the sub-policies, and thus the

need to share information between them, can be minimized. For example, a controller can be built from a sub-policy concerned only with the motion of the center of mass, combined with a second sub-policy limited to affecting the system state in the null space of center of mass motion [Sentis, 2007]. However, because the change in the null space depends on the combined actions of both sub-policies, neither controller is able to accurately predict the future state of the full system. Additionally, approaches that introduce a strong decoupling of the system often require canceling the natural dynamics of the system, increasing sensitivity to model error. If this decoupling can be strongly enforced, the configuration dependence between sub-policies can be reduced or eliminated. While, for fully actuated systems, it is numerically possible to decouple the system’s dynamics in this way, the energy cost and increased sensitivity to modeling error can lead to poor performance.

4.1 Related Research in Humanoid Robot Control

Research with robotic humanoids has focused primarily on locomotion, most often walking gaits on smooth level surfaces, and has relied heavily on task-specific models. A popular approach to developing a walking controller for a humanoid is to find a gait trajectory that satisfies a set of constraints such as actuator torque limits and the need to maintain balance. That trajectory can then be tracked using a controller designed to maintain stability in the presence of small perturbations and modeling errors. Variations on this method, using the Zero Moment Point (ZMP) balance constraint, are used by most humanoid robots with electric motors, including the HRP, ASIMO, HUBO, KHR, HSR, and the WABIAN series. Exceptions include the electric biped developed by CMU and ATR [Morimoto et al., 2003] and Delft’s biped Meta [Schuitema et al., 2005]. Open questions in this area include the design of reference trajectories that increase the natural appearance, efficiency, or robustness of the resulting gait, and the development of new trajectory tracking controllers that enable recovery from larger perturbations than the local balance controller can stabilize.

The primary challenge to stable control of humanoid robots during gait is loss of balance. Existing approaches to maintaining stability can be categorized by their

definition of balance. Quasi-static balance constraints require that the robot only enter states that are stable in a static analysis. Given a planar support surface this constraint implies that the robot’s center of mass (CoM) lies above the convex hull of the points of contact between the robot and the support surface. If this constraint is obeyed, and the robot moves sufficiently slowly, it cannot fall unless pushed. A more common class of balance constraints requires that the robot only perform actions that allow its feet to remain in flat contact with the ground [Vukobratovic, 1973]. The ZMP constraint is the most commonly used member of this class. It is limited to the case of a robot with flat feet moving on a locally flat surface. The final and most general class of balance definitions are those that have no definition as instantaneous constraints. These methods include the multi-step Poincare stability analysis of passive dynamic walking systems, point foot walkers, humans, and robots with control policies that do not produce gaits that obey instantaneous constraints [Garcia et al., 1998, Goswami et al., 1996].

The ZMP is the point on the ground plane at which the net moment of the forces acting on the robot have no horizontal component. When the ZMP falls within the region of support it is equivalent to the center of pressure (CoP). If the ZMP is maintained within the region of support then the feet will not rotate about a non-vertical axis. A more intuitive understanding of the ZMP constraint is provided by the idea that as long as the robot’s motions do not violate the constraint, the feet can be treated as if they are rigidly attached to the ground. Because natural human gait involves rolling contact with the ground, some researchers believe that this constraint precludes natural walking motion. The utility of the ZMP model derives from its ability to reduce the problem of balance to the problem of controlling the change in total system momentum. This decoupling allows the control problem to be factored into two decoupled stages, first determining the center of mass trajectory and then the joint trajectory that produces the current desired center of mass acceleration.

Another tradition in controlling legged robots was pioneered for running hoppers [Raibert, 1986] and later extended to other gait styles [Hodgins and Raibert, 1991, Hodgins, 1991]. These controllers are based on an engineered model, the single link inverted pendulum (SLIP) [Blickhan and Full, 1993] that describes the exchange

between potential and kinetic energy observed in many animal gaits using a pogo-stick-like model. A further simplification of that model is used to design the hopping controller. This simplification assumes that weakly coupled modes of the full non-linear dynamics are in fact fully decoupled and linear. In particular, the forward velocity of the center of mass, the angular momentum, and the vertical velocity of the center of mass are all considered to be decoupled and are controlled by independent linear controllers. An important feature of this model is that the action spaces of each independent controller is completely decoupled from the other controllers by its implementation.

Both constraint-based trajectory optimization approaches, like ZMP walking, and approaches based on finite state machines and linear controllers, like the Raibert hoppers, use the sub-policy strategy as a key component of their approaches. The ZMP approach separates balancing from the remainder of gait by ensuring that any motion used to achieve gait satisfies the ZMP constraint. This assumption permits a controller with a decoupled, tiered architecture, where the lowest level computes joint commands that stabilize the robot as it tracks a trajectory computed by a higher level. The controllers for the Raibert hoppers decouple the problem of biped hopping into the problems of maintaining body pitch, maintaining forward velocity, and maintaining hopping height.

4.2 Trajectory Optimization

Trajectory optimization techniques are a component of many of the sub-policies we consider. These methods can be used to transform an unstable, inefficient trajectory that violates physical constraints into a physically plausible, balanced, and efficient trajectory, if the initial guess is sufficiently close to a viable solution. While trajectory optimization is already used to design trajectories for humanoid robots, the methods developed by the graphics community are of particular interest because they are explicitly designed to make use of motion capture data both for the initial guess of an optimal trajectory and to constrain the search space that the optimizer must explore. Additionally, because animators desire characters that can perform a range of

actions in varied environments, trajectory optimizers developed for human animation tend to be designed to operate on a more general set of inputs than domain specific optimizers developed for periodic tasks such as gait. These features suggest that the trajectory optimization techniques developed for creating physically plausible animations of human figures may also be well suited for creating viable reference trajectories for humanoid robots.

Trajectory optimization techniques are used by both graphics researchers and roboticists to create motions for both animated and robotic humanoid figures. Trajectory optimization refers to a class of methods for determining solutions to a system of differential equations that minimize a functional of the solution while satisfying a set of constraints. A taxonomy of these methods based on salient features in their design is useful in a discussion of their application to robotics and animation. One such feature is whether a method minimizes the objective function directly by modifying the dependent variables subject to the constraints, or indirectly by using the calculus of variations to find a solution to the ODEs that satisfy a necessary condition for optimality, such as the Hamiltonian described by Pontryagin's Minimum Principal [Stengel, 1994]. Because indirect methods are often numerically unstable and require a more accurate initial guess [Schwartz, 1996], we consider only a selection of direct methods in this work.

Direct methods alter some or all of the independent variables to minimize the objective function. While they produce solutions that are strictly integrable, computing derivatives of the objective and constraint functions can become numerically unstable because the effects of actions taken earlier in time can grow exponentially over time. Shooting methods are a popular class of direct methods. These methods integrate the equations of motion forward or backward in time from a known state, varying the control input to achieve an optimal trajectory. Computing the gradient of the objective function is challenging because the influence of control inputs at earlier times can be amplified by the integration, resulting in poor numerical conditioning in the resulting Jacobian. Multiple shooting methods can ameliorate this problem by dividing time into a series of epochs that are integrated separately [Morrison et al., 1962].

Differential dynamic programming is another method that integrates forward in time [Jacobson and Mayne, 1970]. This method iteratively improves a trajectory using quadratic approximations of the value function computed using linear models of the system at many points along the trajectory. It has the advantage of producing not only the optimal control inputs, but also an optimal linear policy at each discretization point. Researchers have suggested that improvements to the value function approximation could be made by fitting a quadratic model to values obtained by forward simulation of the system dynamics [Tassa et al., 2007].

A separate class of direct trajectory optimization methods, referred to as direct collocation methods, vary both the sequence of states and the control inputs. The equations describing the system dynamics are treated as additional constraints. All constraints are enforced only at discretization points, meaning that the system cannot necessarily be integrated forward in time. Direct collocation methods are popular because they are numerically stable and tend to converge from less accurate initial guesses than other methods [Schwartz, 1996]. In the graphics community, trajectory optimization methods were introduced by Witkin and Kass [1988] under the name spacetime constraints. The optimization approach presented in that work and used often in the graphics literature is a direct collocation method [von Stryk and Bulirsch, 1992].

Trajectory optimization for high dimensional systems can be computationally intensive due to the need to compute the Jacobian of cost and constraint parameters with respect to the free parameters. In the traditional formulation of the problem, joint torques appear in the objective function and require $O(n^2)$ time to compute, where n is the number of degrees of freedom in the system. Fang and Pollard [2003] demonstrated a method for computing the force and torque about a single joint or the kinematic root in $O(n)$ time. They showed that if the objective function is reformulated in terms of joint accelerations rather than torques, and physical constraints are specified in terms of wrenches applied to the kinematic root, then a significant speedup to trajectory optimization for systems with many degrees of freedom can be achieved.

4.3 Policy Mixing Control Framework

This section describes the policy mixing control framework [Anderson and Hodgins, 2010] we developed for the seesaw task. The Informed Priority framework we describe in section 4.5 is a later development that supersedes the design described in this section. Understanding the design of Policy Mixing Control helps to motivate the development of Informed Priority control.

The policy mixing control framework composes fully independent sub-policies and does not require an explicit ordering of control priorities. It computes desired joint torques by assigning a numerical weight to each of several sub-policies and finding joint torques that best reproduce the desired outputs of these sub-policies. Given the desired actions from each component policy, the controller computes joint torques that minimize the sum of the weighted deviations from the desired action of each policy. For example, our balance policy provides desired contact forces, while the posture policy provides desired joint accelerations. While it is not, in general, possible to choose a set of joint torques that simultaneously produces the desired contact forces and joint accelerations, we can choose the set of joint torques that minimizes the total weighted difference between the actual and desired contacts forces and joint accelerations.

We developed the policy mixing control framework because we believed that the strict priority ordering present in hierarchical control architectures resulted in instability due to impedance mismatches. As a single example of this problem, consider a two link planar arm. Suppose a two-level hierarchical controller is used, with a high level control policy that controls the distance between the end effector and the origin, and a low level control policy that tries to return the system to a rest pose. The end effector impedance is a combination of the impedance of the high level policy with the impedance of the low level policy in the null space of the high level level policy's state space. If the impedances of these two policies are significantly different, chattering can occur. By softening the hierarchical constraints from a subspace projection to a least squares combination of the inputs we hoped to reduce this problem.

4.3.1 Dynamics

Our controller combines several component policies with different dimensionality and weight to produce by a full set of desired joint torques. Combining these policies requires a dynamic model of the system, and a mathematical description of how joint torques relate to the output values produced by the component policies. Given this information, we can solve a system of linear equations to produce the output joint torques. Unlike other formulations of full body inverse dynamics [Mistry et al., 2010, Nakanishi et al., 2007], the solution vector for this linear system includes all accelerations, contact forces, and joint torques, avoiding the need to explicitly compute the inverse of the mass matrix, at the expense of solving a larger system of equations. We write this solution vector $x = \begin{bmatrix} \ddot{q} & \lambda & \tau \end{bmatrix}^\top$.

4.3.2 Policy Mixing

All the sub-policies we combine produce both a desired action vector, U_{des} , and an action error matrix, \mathbf{J}_{act} . We compute $\mathbf{J}_{act} = \frac{\partial U_{des}}{\partial x}$ such that

$$U_{err} = \mathbf{J}_{act}x - U_{des}$$

Here, U_{err} goes to zero when the computed torque solution vector exactly reproduces the desired policy action. For example, U_{des} could express a desired lateral acceleration for the system's center of mass. In this case, U_{err} would be the difference between this desired acceleration and the true acceleration of the system's center of mass. The non-zero terms of \mathbf{J}_{act} would be the Jacobian of the center of mass acceleration with respect to the joint accelerations in the solution vector.

Given N policies and a set of corresponding component policy outputs U_{err} , and policy weights w , the total output error is

$$\mathbf{E} = \sum_{i=1}^N w_i U_{err_i} = \begin{bmatrix} w_1 J_{act_1} \\ \vdots \\ w_N J_{act_N} \end{bmatrix} x - \begin{bmatrix} w_1 U_{des_1} \\ \vdots \\ w_N U_{des_N} \end{bmatrix}$$

Minimizing E over values of x with the dynamics (Eq. 3.1) as a constraint can be solved as a quadratic programming problem.

4.3.3 Policy mixing

Once the desired output from each component controller has been determined, the output torques are computed by solving a linear system:

$$\begin{bmatrix} \mathbf{J}_{\text{act}} & \\ \mathbf{J}_c & 0 & 0 \\ \mathbf{M} & \mathbf{J}_c^\top & \mathbf{S} \end{bmatrix} \begin{bmatrix} \ddot{q} \\ \lambda \\ \tau \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{\text{des}} \\ -\dot{\mathbf{J}}_c \dot{q} \\ \text{RHS}(q, \dot{q}) \end{bmatrix}$$

where \mathbf{J}_{act} is the Jacobian of the component policy output action error, U_{err} , with respect to x , and \mathbf{U}_{des} is the vector of component policy desired actions. The rows of \mathbf{J}_{act} are weighted to give more priority to some of the policies when the desired actions conflict. In practice, to reduce the time needed to find a solution, we apply a high weight to the dynamics constraint rows and solve with QR decomposition, rather than treating the dynamics equalities as a true constraint using quadratic programming. The desired torque values from the solution vector are then used to control the robot.

4.4 Implementation

We constructed a controller for the seesaw balance task using the policy mixing architecture. We combined three distinct policies to produce the controller. These were a lumped mass balance policy, a full-body pose policy, and a contact load policy.

4.4.1 Lumped mass policy

The lumped mass policy used a simplified model of the robot. The robot's body was treated as a single rigid mass (figure 4.2). The lumped mass model reduction is

$$y_p = \begin{bmatrix} r \\ \theta \\ p \\ L \end{bmatrix} = \begin{bmatrix} \mathbf{CM}(q) \\ \mathbf{O}(q) \\ \mathbf{p}(q, \dot{q}) \\ \mathbf{L}(q, \dot{q}) \end{bmatrix} = \mathbf{R}_p(q, \dot{q})$$

where r is the lumped mass position, θ is the lumped mass Euler angle orientation, p is the lumped mass linear momentum, and L is the lumped mass angular momentum. The function $\mathbf{CM}(q)$ computes the center of mass of the robot using the rigid body model, $\mathbf{O}(q)$ computes the orientation of a “key body” on the robot (we used the upper torso), $\mathbf{p}(q, \dot{q})$ computes the linear momentum of the robot, and $\mathbf{L}(q, \dot{q})$ computes the angular momentum of the robot.

The lumped mass policies take the state of the lumped mass and use a linear policy to produce a desired total center of mass load, or a desired center of pressure location. We selected a center of pressure output for the seesaw task, but also used the total CoM load output successfully for standing balance. The output is constrained so that the center of pressure corresponding to the desired total load remains within the region of support. When the lumped mass policy produces contact loads directly, the relationship between x and U_p is defined in terms of the λ component of x :

$$U_{err} = U_p - \begin{bmatrix} f_l + f_r \\ \tau_l + \tau_r + (r_{CM} - r_l) \times f_l + (r_{CM} - r_r) \times f_r \end{bmatrix}$$

When the lumped mass policy is producing a desired center of pressure the action error is

$$U_{err} = \begin{bmatrix} \tau_l + \tau_r + (r_{CoP} - r_l) \times f_l + (r_{CoP} - r_r) \times f_r \end{bmatrix}$$

Where τ_l and τ_r are the moments about the left and right feet, f_l and f_r are the forces on the left and right feet, r_{CoP} is the location of the center of pressure, and r_r

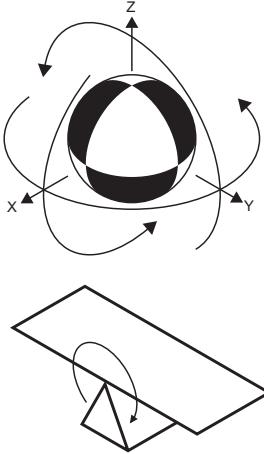


Figure 4.2: The reduced lumped mass seesaw model

and r_l are the location of the left and right feet.

4.4.2 Body posture policy

We used PD servo policies to produce desired accelerations or loads for a subset of the robot's joints:

$$U_{des} = -\mathbf{HK} \begin{bmatrix} q - q_{des} \\ \dot{q} \end{bmatrix}$$

where \mathbf{H} selects the degrees of freedom that this policy produces desired loads or accelerations for. U_{des} can be used as desired loads or desired accelerations. The desired state, q_{des} , is either a fixed pose, usually the pose the robot was in when the controller started, or it is a function of other state variables.

Using a desired full body state that is a function of the current state can improve performance when the robot's pose changes significantly during the task. For example, during standing balance a single fixed reference pose will usually suffice. However, when the robot is balancing on the moving seesaw, we linearly interpolated the desired pose between the initial pose and a mirror image of the initial pose as the seesaw angle

changed from its initial angle to the inverse of the initial angle.

$$q_{des} = \alpha q_{init} + (1 - \alpha) \text{mirror}_x(q_{init})$$

$$\alpha = \frac{\theta_{cur} - \theta_{init}}{2 |\theta_{init}|}$$

Here, θ is the angle of the board. This computation provides desired poses with a center of mass near the desired center of mass as the board moves. This computation is a simpler and faster operation than solving the inverse kinematics to determine a desired full body pose that matches the desired center of mass location and preserves the foot contact constraint.

The relationship between U_{des} and x depends on whether desired torques or accelerations are produced, but is simple in either case:

$$U_{err} = U_{des} - \mathbf{S}\tau$$

$$U_{err} = U_{des} - \mathbf{S}\ddot{q}$$

4.4.3 Static contact load policies

The lumped mass balance policies produce a desired total ground contact load, but provide no information about how this load is to be divided between the feet. Because no higher weight policy fully determines the contact forces, the PD servo policies can produce undesirable contact loads, even when they have very low weights.

To solve this problem, a third type of policy, the static contact load policy, is introduced. This policy's output is constant in the robot's state, and always requests that the foot contact torques on each foot be equal to a constant value, or that the difference between the torques on each foot be constant. The relationship between the components of the solution vector x and U_{des} is

$$U_{err} = \mathbf{G}(\tau_l - \tau_r)$$

$$U_{err} = \begin{bmatrix} \mathbf{G}\tau_l \\ \mathbf{G}\tau_r \end{bmatrix}$$

where G selects the particular axis being controlled by the static contact load policy. In our experiments on the seesaw, the static contact load policy tried to maintain zero torque about the foot load cells along the X axis.

4.4.4 Solving for Desired Torques

We solve the system by applying a high weight to the dynamics constraint rows and solving with QR decomposition. The desired torque values from the solution vector are then used to control the robot.

The contact constraint Jacobian is computed numerically using a finite difference method. Each column of \mathbf{J}_c is computed by altering the corresponding component of the current pose and computing the resulting change in the translation and rotation of each foot relative to the seesaw. The time derivative of this Jacobian, $\dot{\mathbf{J}}_c \dot{q}$, is computed by Euler-integrating the current pose forward in time by a $1e-8$ second, computing a new contact Jacobian at this new pose, and taking the difference between the current and future contact Jacobians.

4.5 Informed Priority Control

Informed priority control is a serial cascade control design that introduces explicit dependencies between policies for both run time and configuration time information. It is a complete replacement for the policy mixing design described in the previous section. Like all cascade controllers, control signal information travels down the cascade, with the control signal output of one policy used as the control input to the next. In our case, this cascade produced a final torque vector that is sent to the robot hardware. In addition to this downward information flow, models of each controller travel up the cascade in the form of automatically generated models of the behavior of the partial downstream cascade. These models are used by the sub-policies to predict the future behavior of policies lower in the cascade, allowing every policy to have a complete and coherent model of the system it controls. This section describes the informed priority control framework and demonstrates a particular implementation

of that framework for control of a humanoid robot balancing on a bongo-board.

Informed Priority Control differs from existing cascading control or inner and outer loop control designs in that it includes a general facility for automatically building reduced models of each inner loop system. This facility provides outer loop controllers are provided with linear models of the system they control, linearized about arbitrary points in the full system's state space.

Based on the difficulties we encountered applying policy mixing control, we developed a new control design that resolves some of these problems. In the policy mixing formulation, none of the component policies has information about any other policy. Informed priority control informs component policies about the behavior of other policies in two ways. First, high-priority policies use models of the system that include the behavior of low priority policies. Second, low priority policies take the output of the high priority policies as their control inputs.

Informed priority control combines sub-policies by passing the control output of one policy to the control input of another, eventually connecting all sub-policies into a single cascade. Additionally, every policy is provided with a model of the system its control output is passed to. We automatically construct these models of the behavior of the existing cascade before adding each additional link.

For example, the lowest-level policy in the cascade receives only the rigid body model of the robot, while the second to lowest policy receives a model of the closed loop system that includes both the first policy and the rigid body model. Figure 4.4 shows which parts of the control system are included in the model presented to each policy. While the informed priority control framework is defined without reference to model reduction, the automated model construction process it uses can build models in a reduced feature space, if this reduction is desired.

Each model fully describes the behavior of the system controlled by the policy using that model. Actions taken by policies higher in the cascade are not predicted by the model. However, the accuracy of the model is unaffected because the output of those higher-level policies is presented as a control input to the policy using the model. Direct analysis of the stability and optimality of controllers built using the informed priority control framework is possible because model error is bounded and

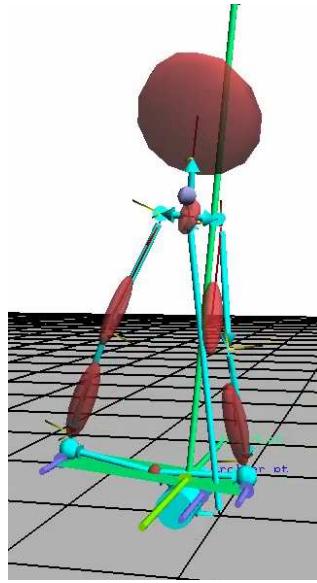


Figure 4.3: Simulated biped performing bongo-board balance task

the interactions between sub-policies are well defined.

4.5.1 Informed Priority Control Framework

Informed priority control informs component policies about the behavior of other policies in two ways. First, high-priority policies use models of the system that include the behavior of low priority policies. Second, low priority policies take the output of the high priority policies as their control inputs. While other humanoid robot control designs have used the output of some sub-controllers as the input to others, they assume that the inner-loop controller has negligible dynamics. This assumption can lead to instability when the inner-loop policy's dynamics are on a similar time-scale to the outer-loop policy. Similarly, the policy mixing approach give reduced models of the system to each policy, but these models reflect the behavior of the rigid body model while ignoring the effects of every other policy. In contrast, the informed priority formulation explicitly includes these other policies.

In our experiments with informed priority control we used only two policies. The lower priority policy, or base policy, was responsible for maintaining the posture of

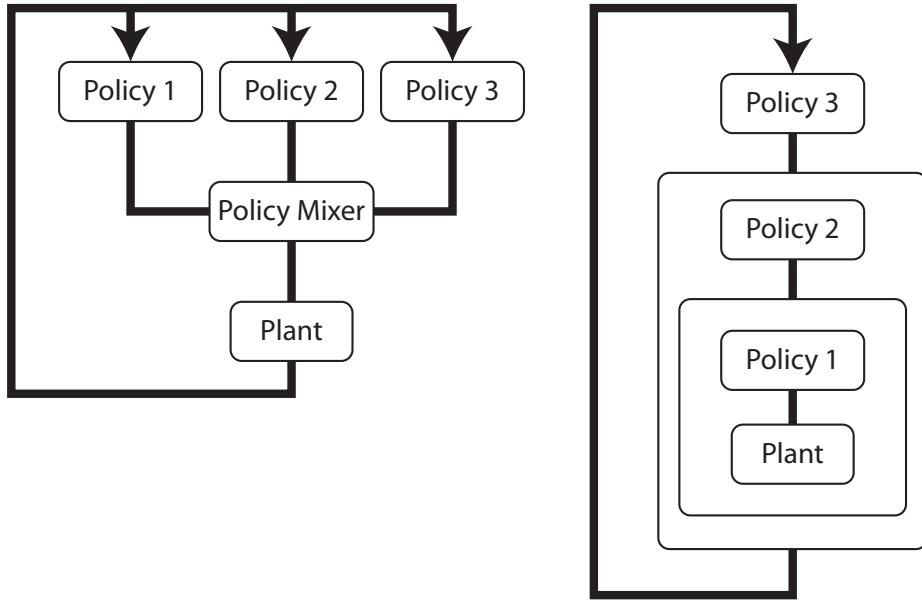


Figure 4.4: Policy Mixing and Informed Priority Control Diagrams. Policy mixing control (left) produces a single output from many policies that use the same system model. Informed priority control (right) presents each policy with a model that includes the behavior of all lower priority policies.

the robot. It produced desired joint torques based on the current state of the robot and a desired state set by the higher priority policy. The base policy was designed to work well over a wide range of tasks, and to track the desired pose without oscillation.

The informed priority control framework provides predictive models of the policies lower in the control cascade to those higher in the chain. This arrangement allows higher level policies to design their control inputs in order to accommodate the future behaviors of lower level policies. For example, a disturbance to the upper torso may trigger a response from a low-level posture controller. This response will alter the future center of pressure, and may require that the balance controller alter its planned future actions to compensate for the upper body correction. Without this model, the balance controller would have no prior expectation of the upper body correction. Additionally, if the low-level policy's gains are re-tuned, the higher level policy's model is automatically updated to reflect the new response rate of the low level controller. This updated model permits the higher level policy to automatically

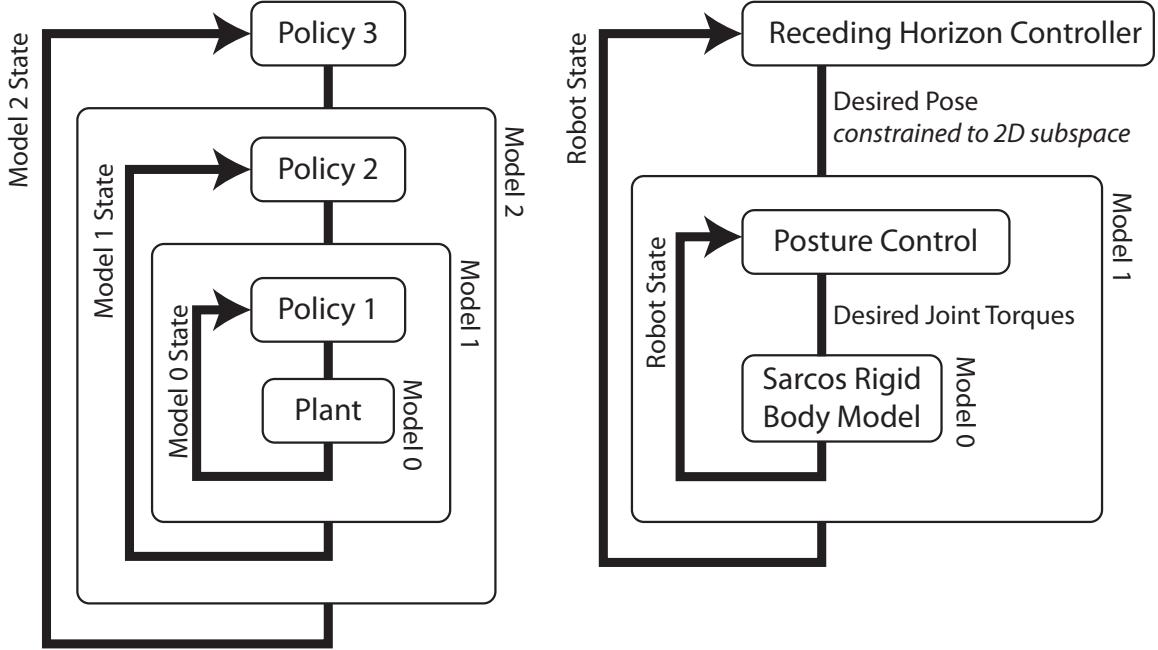


Figure 4.5: Left: The generic informed priority control framework supports an unlimited number of sub-policies and includes the internal state of sub-policies in the surrounding model. Right: The bongo-board balance implementation uses only two sub-policies, neither of which has internal state.

alter its control outputs to compensate for the alterations to the low level model.

Given the full system dynamics $\ddot{q} = f(q, \dot{q}, u)$, an initial low-level policy $u = P_b(x, a_2)$ defines a new system model

$$\ddot{q} = f_1(q, \dot{q}, a_2) = f(q, \dot{q}, P_b(q, \dot{q}, a_2))$$

The new model $f_1(q, \dot{q}, a_2)$ has the same state-space dimensionality as the original full system model, but the action space has the dimensionality of the task-specific policy input a_2 rather than the full joint torque vector u .

Additional policies can be added to the cascade in a similar manner. A new policy in the cascade, $a_n = P_n(q, \dot{q}, a_{n+1})$, is based on a model of the previous system in the cascade:

$$\ddot{q} = f_n(q, \dot{q}, a_n) = f_{n-1}(q, \dot{q}, P_{n-1}(q, \dot{q}, a_n)) \quad (4.1)$$

The ability of the policy P_n to stabilize the system $f_n(x, a)$ depends on the choice of the underlying policies $P_i(x, a)$ where $i \in \{1 \dots (n - 1)\}$. In particular, the base policy should attempt to stabilize as many modes of the full system as possible, avoid violating constraints, and keep $f_n(x, a)$ smooth.

The models of the system constraints and cost functions are also updated and supplied to each sub-policy as in equation 4.1. If a simplified model is desired at some point in the chain, it can be built using the normal model reduction procedure. Note that even if a reduced model is used at one point in the chain, policies further up the chain are not limited to the state space of this model, and can build their own models in the full state space.

4.6 Implementation of Informed Priority Control

We used an informed priority controller for the bongo-board balance task. This controller used a base policy that was responsible for maintaining the overall posture of the robot and maintaining contact between the robot's feet and the bongo-board. The input to the base policy was a desired posture, generated by a second task-specific policy. We experimented with two distinct designs for this task-specific policy, a receding horizon trajectory optimization based controller, and a mode-switching controller. In this section, the base policy and the task-specific policies are described in detail.

4.6.1 Base Policy

The postures chosen by the task policy must be transformed into desired joint torques before they can be sent to the individual joint controllers. The base policy performs this transformation. Moreover, the role of the base policy is to reduce the dimensionality of the action space presented to the task policy without making the system uncontrollable due to underactuation. Figure 4.6 illustrates the relationship between the task and base policies. In the final bongo-board simulation controller, the task controller selected a pose from a one or two dimensional space of poses, and the base

policy tracked this desired pose quickly and without oscillation.

We defined a base policy that stabilized the joint angles of the robot, but not the bongo-board state. This policy was the sum of gravity compensation torques and a linear PD feedback term that provided well damped responses to inputs. The baseline policy was not designed to stabilize the system on the bongo-board. The goal of the baseline policy was to track the desired pose control signal generated by the higher level bongo-board task controller. To achieve this goal, the baseline controller included the rigid body mode of the bongo-board when calculating both the damping gains for the linear component of the policy and the variance minimizing gravity compensation torques. The result of this base policy is that the joint angle coordinates of the system model presented to the task-specific controller are passively stable. The only unstable coordinates in the model presented to the task controller are those that describe the state of the bongo-board. We write the combination of the linear feedback term and the gravity compensation term as:

$$P_b(x, a) = -K(x - \text{inflate}(u)) + G(x)$$

Here $\text{inflate}(u)$ produces the full state pose corresponding to the task action u . Because the action space is linear in this case, $\text{inflate}(a) \approx \mathbf{U}u$ where the matrix \mathbf{U} contains the basis poses for the action space. Because the kinematic constraints are nonlinear in the state space of the full model, this linear inflation will produce desired poses that violate the kinematic contact constraints. We used a computationally efficient method of correcting these errors. This method pre-computed poses near the space spanned by \mathbf{U} that do not violate the kinematic constraints, using sequential quadratic programming. Then, at runtime, it used locally weighted regression [Atkeson et al., 1997a] to interpolate between these points to construct poses that significantly reduced kinematic constraint violations. While the system did not require this correction term in simulation, in hardware the limited friction between the board and feet allowed the feet to slip when the desired pose moved far from the reference state, if this term was not present.

The remainder of this section discusses the procedure we used to design K so that

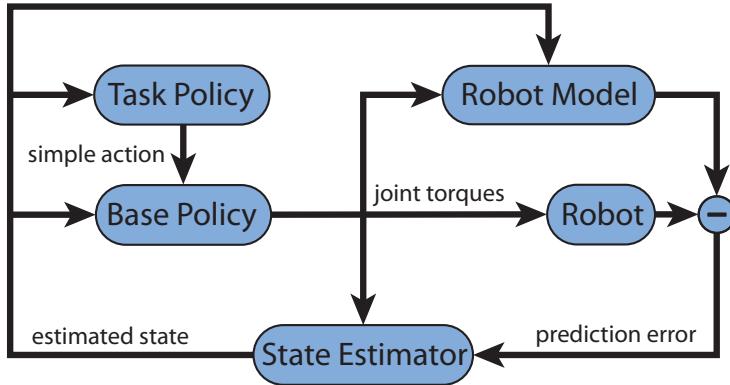


Figure 4.6: Control flow diagram for task and base policy

the system would respond quickly to changes in u without being underdamped, and the construction of G we used to reduce sensitivity to model error and accommodate unactuated degrees of freedom in the model.

4.7 Linear Feedback Component

The linear feedback policy K was designed with the intent that the robot would track the desired position specified by the input a quickly, but without oscillation. We tried three methods for designing K . While all three methods produced stable controllers, only one design process gave meaningful tuning inputs that allowed us to adjust the behavior to match the desired performance.

The first design process we used was to linearize the system dynamics, including the gravity compensation term, about a reference pose and design a linear quadratic regulator to stabilize the system about this point. However, the gains produced by the LQR process tended to produce damping gains that resulted in underdamped oscillation. We were unable to produce the desired performance characteristics by tuning the \mathbf{Q} and \mathbf{R} cost matrices directly because the relationship to the whole body behavior is complex. We found that it was possible to produce sets of gains that were critically damped but not stiff enough, or stiff gains that were underdamped, but were unable to find a set of cost matrices that produced the desired body stiffness while remaining critically damped. It was unclear how to modify the cost function

to produce the specific behavior changes we wanted, and difficult to manually tune because there are many parameters.

The second design process we used was to hand tune independent feedback gains for each joint, in an attempt to reduce the number of parameters that required tuning and to clarify the relationship between those parameters and the system's behavior. This approach worked poorly because the best gains for a specific joint depend on the configuration of the entire system. For example, the inertia of the leg observed from the hip flex/extend joint is much larger when the knee is straight than when the knee is fully bent. Additionally, without off diagonal terms in the feedback matrix the system tends to be underdamped when using the minimum stiffnesses necessary to overcome model error in the gravity compensation and the maximum damping gains that do not cause uncontrolled oscillation.

The final design process we used, and the one that produced the desired behavior, was based on identifying the eigenmodes of the system and treating those modes, instead of the individual joints, as the basis for independent feedback gains. This preserved the smaller number of parameters that required tuning while reducing the effects of not having feedback coupling between modes. We computed a linear approximation to the forward dynamics of the full model at a reference pose and found the eigenvectors of this forward dynamics matrix. Because this matrix transforms generalized control forces into generalized accelerations, the eigenvalues correspond to the inverse of the effective inertia of each independent mode. Tuning independent linear controllers in this modal space proved easier than tuning full state \mathbf{Q} and \mathbf{R} matrices.

The linear feedback terms are computed using the singular value decomposition of the forward dynamics, computed from the inverse dynamics \mathbf{D} and a selection matrix \mathbf{s} that removes elements that correspond to base coordinates, constraint forces, or

constraint violations, leaving only those elements that correspond to joints:

$$\mathbf{D} = \begin{bmatrix} \mathbf{M} & \mathbf{J}_c \\ \mathbf{J}_c^\top & 0 \end{bmatrix}$$

$$\mathbf{D} \begin{bmatrix} \ddot{\mathbf{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} \boldsymbol{\tau} \\ 0 \end{bmatrix}$$

$$\ddot{\mathbf{q}} = \mathbf{s} \mathbf{D}^{-1} \mathbf{s} \boldsymbol{\tau} = \mathbf{U} \mathbf{S}^\top \boldsymbol{\tau}$$

Because each torque vector in the rows of \mathbf{V} produces an acceleration that is orthogonal to the acceleration produced by any other torque vector in \mathbf{V} , we can design the linear feedback term for each mode without considering potential interactions with other feedback terms. In practice, we choose a uniform stiffness value that is applied to every mode and a damping term that is proportional to the square root of the effective inertia of the mode.

$$\mathbf{K}_p = \mathbf{V} k_p \mathbf{S}^+ \mathbf{U}^\top$$

$$\mathbf{K}_d = \mathbf{V} k_d (\mathbf{S}^+)^{\frac{1}{2}} \mathbf{U}^\top$$

We found that the best performance could be obtained by making further adjustments to the overall gain scaling for each mode. This adjustment allowed us to increase the overall stiffness and damping of the system while not increasing the gains of modes that would have developed instabilities at these higher gains. Specifically, we dropped the feedback gains for the first five modes by half, and increased the damping gains for the largest three modes by twenty five percent. When underdamped oscillations did develop during tuning it was easy to diagnose which mode's gains needed to be adjusted because the oscillation typically limited itself to only one mode, as expected. Figure 4.7 shows an example of this behavior where the gain on mode three has been increased past the stable limit. If this same data were viewed in terms of joint angles the oscillation would appear on every plot, making it exceedingly difficult to determine which gains needed to be adjusted.

Because of the contact constraints that prevent the feet from moving relative to each other, the six modes with the largest apparent inertia correspond to the null

space of J_c . If the linear model of the system's kinematics were perfectly accurate, the system would be unable to move in this null space. However, because J_c is slightly inaccurate, and because J_C changes as the system state changes, we treat these six modes as if they were unconstrained modes with a moderate inertia and supply feedback terms for them by replacing the zeros on the diagonal of \mathbf{S} with a uniform non-zero value.

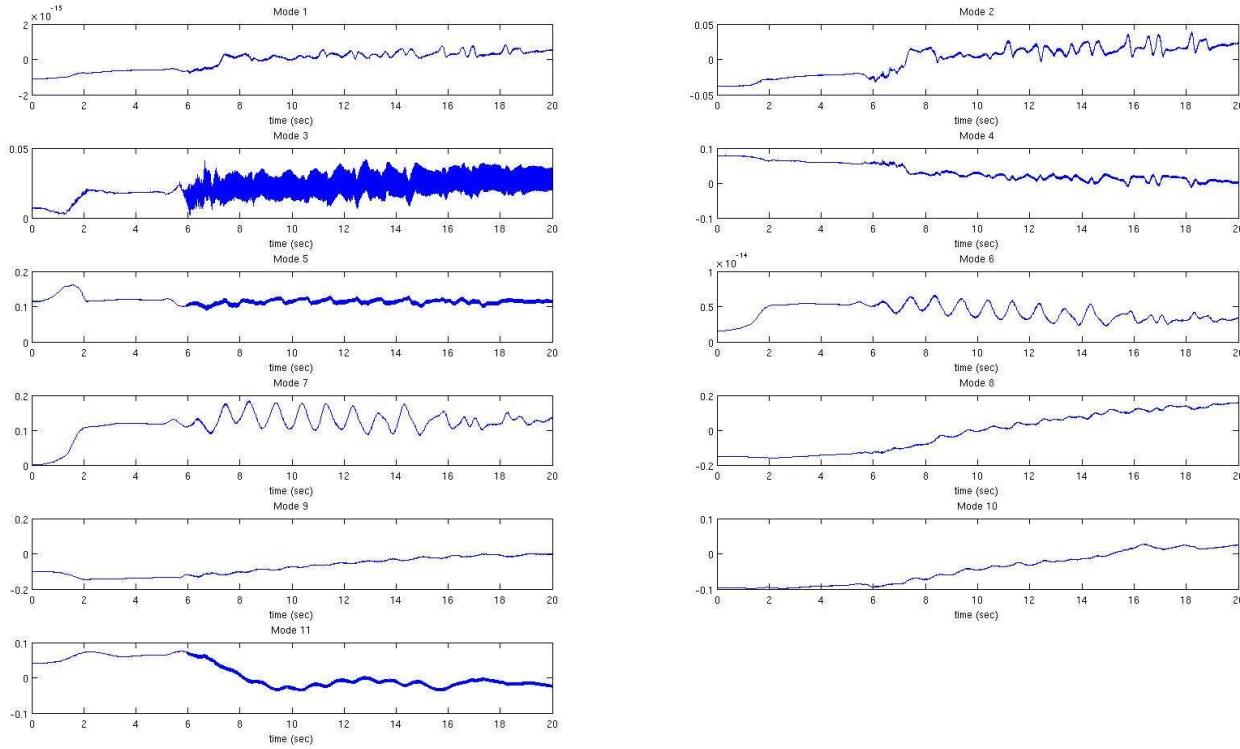


Figure 4.7: Example of oscillation per mode during gain tuning. Note that the high frequency oscillation is limited to a single mode of the system.

4.8 Gravity Compensation Component

We compensated for the effect of gravity on the actuated joints. In a fully actuated system gravity compensation can be achieved by using the inverse of the right hand side forces as the joint torques. Because the bongo-board joints and the root coordinates are unactuated in our model it was not possible to apply the inverse of the right hand side forces directly. We chose to compensate only for gravitational acceleration at the actuated joints and allow the unactuated degrees of freedom to have uncontrolled accelerations. Because the loop constraint eliminates several degrees of freedom, there is not a unique solution for the set of torques that compensate for gravitational acceleration at the joints. We resolved this redundancy by minimizing an objective function defined by the expected variance in the resulting joint accelerations due to load cell scale factor miscalibration.

When the robot is standing there is typically a redundant degree of freedom in each leg corresponding to an internal motion of the leg without changing the location of either the hip or the foot. This degree of freedom usually involves rotating the knee about the line connecting hip to ankle using joints in the hip and ankle. This situation is similar to the case of a human with fixed hip and foot positions.

Transmitting a large gravitational load across a free body with low inertia requires the actuators on both sides of that body to apply counteracting forces. If these forces are slightly imbalanced a large acceleration of the low mass body will result. Because the remaining degree of freedom in the leg has a low effective moment of inertia, small load cell miscalibrations can cause large accelerations in this mode.

Consider figure 4.8 as a simplified example of a gravity compensation problem with redundancy. Gravity compensation requires that $a + b = 10g$ and $c - b = 1g$. This constraint leaves one unconstrained degree of freedom in the solution. The torque vector that minimizes the sum of squared torques as expressed by the objective function $\tau^T \mathbf{I} \tau$ is

$$\tau = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 3 \end{bmatrix} g$$

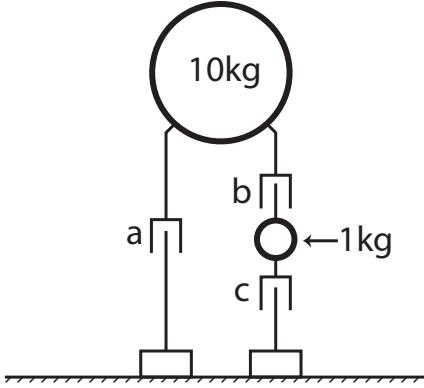


Figure 4.8: Example of a system in which gravity compensation at the joints is under-determined. The torque minimizing and variance minimizing solutions are distinct.

However, if we assume that each actuator will apply a force with an error that grows linearly with the applied force, we can define an alternate objective function that minimizes the acceleration error due to this force error. Using this error-minimizing objective function the gravity compensation forces are

$$\tau = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 10.42 \\ -0.42 \\ 0.57 \end{bmatrix} g$$

We construct the objective function for the variance minimizing redundancy resolution using the forward dynamics. Given a forward dynamics matrix \mathbf{A} with columns A_n , we use the magnitude of each column vector as the cost for the corresponding torque. Assuming that the scale factors for the torque feedback sensor on each joint have independent error with uniform variance σ , the variance of the torque error for any particular joint is $\sigma\tau^\top A_n^\top A_n \tau$. Using a uniform cost for acceleration error across all joints we can compute the acceleration error variance:

$$\mathbf{E} [Var(\ddot{q})] = \sigma \sum_i \sum_j (A_{i,j} \tau_j)^2 = \sigma \tau^\top \begin{bmatrix} A_1^\top A_1 & & \\ & \ddots & \\ & & A_n^\top A_n \end{bmatrix} \tau$$

This matrix can be used as the quadratic cost function in solving a quadratic programming problem to find a set of torques that produces zero acceleration at the actuated joints.

4.9 Enforcing Output Constraints

The desired torques that are computed as the sum of the gravity compensation and linear feedback components may violate contact constraints. These contact constraints limit the center of pressure under each foot to remain within the base of support for that foot, so that the feet do not roll on the ground. Because these contact constraints are linear in the constraint forces, λ , and the constraint forces are included in the forward dynamics solution, we can efficiently derive linear constraints on the output torque. These output constraints are enforced while running the optimization process that produces the final output torques, minimizing the difference between the unconstrained output torques and the final output torques. Figure 4.9 shows how the QP optimization performed by the pose controller is combined with the SQP optimization performed by the receding horizon controller to produce a final control output.

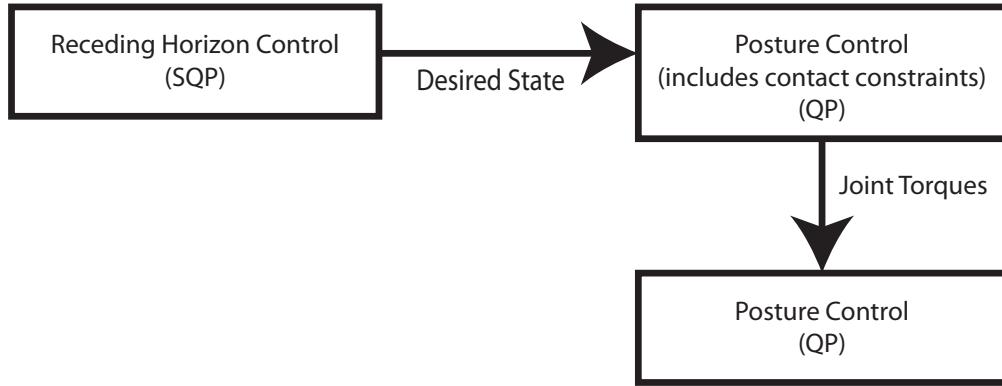


Figure 4.9: Sequence of optimization steps in the bongo-board controller

4.10 Receding Horizon Control

We developed a receding horizon controller that produced a sequence of future desired poses as its output. The receding horizon controller used a model of how the base policy would track these sequence of desired poses, and could use that model to choose a sequence that minimized expected future costs given contact and joint limit constraints. To reduce the computational complexity of the trajectory optimization problem, the controller was restricted to selecting poses from a small subspace of the full space of valid poses. Because the base policy stabilizes the internal degrees of freedom of the robot, leaving only the unactuated bongo-board joints to be stabilized, the significant underactuation of the model did not result in an uncontrollable system.

We implemented the receding horizon control policy using sequential quadratic programming. We developed methods for using either reduced model dynamics or linearized full model dynamics as the basis of a real-time control algorithm, although reduced action spaces were used in both cases. In this section, we describe the general formulation of the receding horizon controller and the sequential quadratic programming method we used to compute control solutions. This optimization operates on many time steps using a simplified model, unlike the optimization process described in section 4.6, which operates on the full model over a single timestep.

The receding horizon controller computes a predicted output sequence, $\mathbf{u} = \{u_1 \dots u_n\}$, that minimizes an objective function $C(x, \mathbf{u})$ computed from the current state and \mathbf{u} .

$$\begin{aligned} C(x, \mathbf{u}) &= X^T \mathbf{Q} X + U^T \mathbf{R} U \\ X &= [x_1, x_2, \dots, x_n]^T \\ U &= [u_1, u_2, \dots, u_n]^T \end{aligned} \tag{4.2}$$

where X is a column vector constructed by concatenating the set of predicted future states and the current state. Likewise, U is a column vector constructed by concatenating the predicted future actions and the current action. While \mathbf{Q} and \mathbf{R} can be block diagonals constructed from per-state and per-action quadratic cost functions,

we found it useful to penalize the difference between consecutive actions and consecutive states. This penalty served to reduce the acceleration and jerk produced by the controller.

Computing the optimal control sequence requires an initial guess for the action sequence. We compute the predicted future states that result from that action sequence. Linearizing the dynamics about each predicted future state, we compute the derivative of the objective function with respect to changes in the action sequence. This partial derivative is sufficient to formulate a constrained QP sub-problem that is solved to find an update to the action sequence. The updated action sequence is then used to compute further estimates of the optimal sequence by repeating this process.

Given the initial guess at the optimal control sequence and the initial state of the system, we first compute the series of states this control sequence would produce. This computation is performed by iterating the equation:

$$x(t_i + 1) = F(x(t_i), u(t_i)) \quad (4.3)$$

until $x(t_i)$ has been computed for each $i \in \{1 \dots h\}$ where h is the total number of lookahead steps. Then, for each $x(t)$ we compute a linearized model of F about $(x(t), u(t))$. This linearized model, having the form $x(t+1) = A_t x(t) + B_t u(t) + c$, is then used to construct a quadratic model of the objective function as a function of the control sequence. This quadratic model is based on a linear model of how the sequence of predicted states will change as the predicted control sequence is varied. This linear model is constructed from the individual linear models of the forward dynamics at each node along the current best guess at the optimal trajectory.

$$x_{new} = x_{old} + \mathbf{B} \Delta U$$

$$\mathbf{B} = \begin{bmatrix} B_1 & 0 & 0 & \dots & 0 \\ A_1 B_1 & B_2 & 0 & & \vdots \\ A_2 A_1 B_1 & A_2 B_2 & B_3 & & \vdots \\ \vdots & & \ddots & & 0 \\ (A_{n-1} \dots A_1) B_1 & (A_{n-1} \dots A_2) B_2 & \dots & A_{n-1} B_{n-1} & B_n \end{bmatrix} \quad (4.4)$$

Once this linear relationship has been computed, the full quadratic objective function model can be derived:

$$\begin{aligned}
 C(x, \mathbf{u} + \Delta\mathbf{u}) &= (X + B\Delta U)^\top \mathbf{Q} (X + B\Delta U)^\top + (U + \Delta U)^\top \mathbf{R} (U + \Delta U) \\
 &= \Delta U^\top (\mathbf{B}^\top \mathbf{Q} \mathbf{B} + \mathbf{R}) \Delta U + \\
 &\quad (U^\top (\mathbf{R} + \mathbf{R}^\top) + X^\top (\mathbf{Q} + \mathbf{Q}^\top) \mathbf{B}) \Delta U + \\
 &\quad X^\top \mathbf{Q} X + U^\top \mathbf{R} U
 \end{aligned} \tag{4.5}$$

The minimum of this quadratic function with respect to the constraints is computed using a quadratic programming routine with linear constraints that limit the maximum distance from the reference pose and maximum action. The optimal update to the control sequence is then added to the current control sequence, and the entire process is repeated until the control sequence converges or an iteration limit is reached.

4.10.1 System Models for Receding Horizon Control

The receding horizon control formulation described in the previous subsection does not depend on the use of a full or reduced model of the system. However, using a full model increases the size of the actions space dramatically, and increases the time required to solve each QP sub-problem. The computational resources available did not allow us to optimize a control sequence for the action space of the full robot within one control cycle. We developed an alternate formulation for the receding horizon controller that avoided the need for reduced model dynamics while keeping the dimensionality of the action space small.

Because the pose controlled robot that the receding horizon controller controls is passively stable in the actuated degrees of freedom, it can have a small set of available actions and still be stable. We exploit this fact by selecting only a subset of the eigenmodes of the system as the action space of available accelerations. We manually selected one or two motions that reflected our understanding of the actions humans used to perform the task. More detail on this process is available in section 3.7.

4.11 Mode Switching Control

While the receding horizon controller performed well in simulation, it performed poorly on the physical hardware. Because the receding horizon approach depends on the accuracy of its model of the system, we suspected that inaccurate parameters for the reduced model of the system could be a significant factor. To further reduce the number of model parameters, we designed a mode switching controller that limited the number of possible output actions to a finite set of states. This simplification limits the amount of experimental training data needed to determine the model parameters. In particular, we have a single linear model with only four states that describes the system dynamics with a fixed body pose. The transition between output poses is modeled with a second, independent, linear model. Our implementation included only two output actions, and these actions were symmetric mirror images of each other. This output representation reduced the parameter space for the entire model to a pair of four by four matrices, one for the continuous dynamics as the robot held a steady pose, and one that captured the transition between the steady poses.

We built a hybrid linear model of the dynamics from the full rigid body dynamics by applying the finite difference algorithm described in section 3.4 to the simulated the full body dynamics. For the continuous time model, where the body pose is fixed and the bongo-board moves, we set the body’s initial pose equal to the output pose and varied the initial state of the bongo-board. To build the model of the transition between desired poses, we simulated 0.3 second periods, in which the desired body pose shifted smoothly from the initial pose to the mirror image of that pose over the first 0.1 seconds. This smooth shift was the same shift used in the actual controller when a transition was triggered. We built a linear model of the transition function by simulating from many initial bongo-board states and fitting a first order model to the resulting data.

The task policy selected one of two possible postures and provided that posture as input to the base policy. The postures we chose tipped the board to the left or right, without moving the center of mass. Because the state space was small we used a grid based dynamic programming policy generation method to build a globally optimal

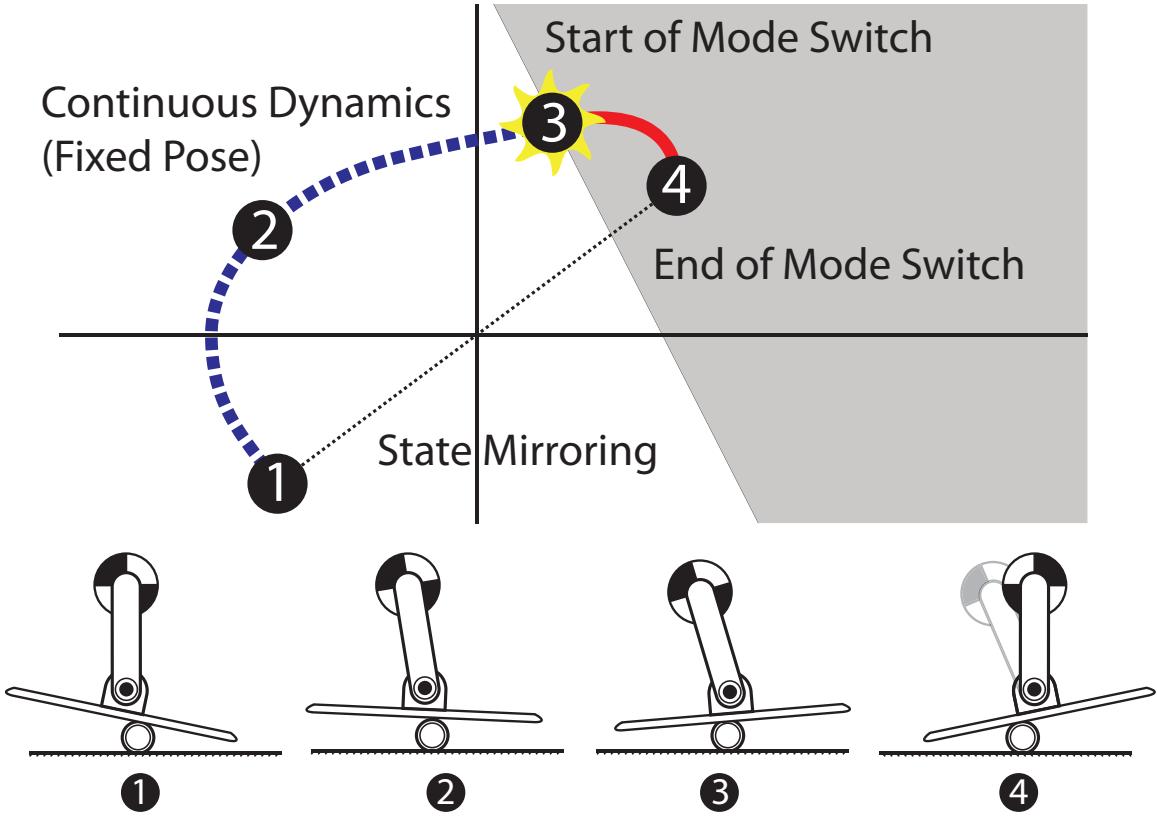


Figure 4.10: Hybrid Linear Dynamics

switching policy for this model.

Figure 4.10 describes a possible steady state behavior of the simulated hybrid linear controller. Beginning with the state labeled one, the robot maintains a fixed body pose as the board and roller move. A linear model of this system is simulated with a time step of 0.01 seconds and at each timestep the decision policy may choose to initiate a mode switch action. The continuous time dynamics (dashed blue line) take the system through state two and eventually reach state three. When the system reaches the decision boundary (gray region) the policy initiates a mode switch action (state three). When the mode switch action occurs the desired pose shifts smoothly to the mirror image of the initial pose over 0.1 seconds. The mode switch is modeled as a single linear transform applied to the current state and represents 0.3 seconds of elapsed time (solid red line). The additional 0.2 second after the desired pose reaches

the new fixed pose allows the robot's body state to settle after the transition. After the 0.3 second transition is complete, the system is in state four, which is the mirror image of state one. To simplify the dynamic programming problem, we then invert the state variables, effectively mirroring the system from left to right, and continue the continuous time simulation.

Our first task when building the controller was to determine whether or not this hybrid linear model had any stable orbits. In particular, we wanted to know if stable orbits existed given pessimistic assumptions about model and sensor error. The pessimistic assumption we made was that following each transition action, the true state of the system could be any state within the grid cell containing the point predicted by the forward dynamics. This state uncertainty would persist until the system made another transition. A state is not viable if there is no time at which all trajectories originating from the vertices of the grid cell containing that state are passing through other viable grid cells. The requirement that all vertex-originating trajectories be in viable cells at the same time is required to build a control policy that determines the time to wait before switching control outputs under the uncertainty conditions we impose. To find the viable region, we iteratively update viability over all grid cells until reaching a steady state. Even with the pessimistic assumption that the worst possible transition would always be taken, we found a viable region in the simplified model. Unfortunately, this viable region was very thin — applying PCA to the set of viable grid cells revealed that it has nearly zero extent in the direction of the unstable eigenmode.

The hybrid linear model was used as the basis for designing a switching policy that chose when to initiate a transition between the two basic body poses. We wanted to maximize the robustness of the policy, so we used a minimax dynamic programming method to design the policy. We represented the policy on a grid, but instead of choosing whether or not to begin a transition in each grid cell, we chose how long to delay before starting a transition in each cell. We chose the time that minimized the maximum cost of a transition, over the set of trajectories beginning at the vertices of the current cell.

$$V(x) = \min_{\{t\}_0^\infty} \{C(x, t) + \beta \left[\max_{\{i\}_1^{16}} \{V(x_i(t))\} \right] \}$$

Where $x_i(t)$ is the trajectory starting at the i^{th} vertex of the policy grid cell centered on x , $V(x)$ is the value function being computed, and $C(x, t)$ is the cost of moving along the trajectory beginning at x for t seconds, then executing a transition to the other pose. The cost matrices \mathbf{Q} and \mathbf{R} used to compute the cost of both continuous movement along a trajectory and the discrete transition function are produced by the model reduction procedure, and derive directly from the full-model cost function.

Requiring that the elapsed time before the mode switch be identical for each mode maximizes the insensitivity of the resulting policy to sensor error. The alternative, in which the optimal transition time for each trajectory exiting a cell is selected independently, assumes that the system is able to correctly identify the precise state of the system, rather than only the nearest cell vertices. Coupling the decision times for nearby trajectories results in a policy that selects actions that are viable regardless of the precise initial state. This alternate formulation would be written as

$$V(x) = \max_{\{i\}_1^{16}} \left\{ \min_{\{t\}_0^{\infty}} \{C(x, t) + \beta V(x_i(t))\} \right\}$$

4.12 Summary

This chapter described the two control architectures we developed to support dynamic balance tasks with humanoids. The first, policy mixing control, combined the control signals from several independent controllers using a single QP optimization step. This softened that hard constraints found in strict priority control schemes, at the cost of the ability to reason clearly about the stability of the aggregate system. The second architecture, informed priority control, uses a serial cascade pattern to connect several controllers, but uses automatic model generation to build a new model at each stage of the cascade, allowing model based controllers to adapt their behavior based on the configuration of the controllers consuming their output. This preserves the ability to reason about the stability of the aggregate system, while allowing sub-controllers to modify their behavior based on the behavior of other sub-controllers.

Chapter 5

Modeling and Sensing Error

The ability to accurately predict future states of the system is essential to our model based controllers. This ability depends both on developing and maintaining an accurate model of the robot and accurate estimation of the current state of the system. The system model includes both the conversion from sensor raw signals to meaningful units, and the rigid body model of the robot. The sensor signals that require conversion to calibrated units are the joint position sensors, the joint load cells, the six-axis foot load cells, and the valve command signals. The physical model of the robot is a parametric rigid body model based initially on a CAD model of the robot. This chapter describes the methods we used to identify best-fit parameters for the mass, center of mass position, and moment of inertia for each link in the body based on collected data. In addition to determining offline model parameters, we estimated both model parameters and state online. This chapter also discusses how these online adjustments were performed.

5.1 Kinematic Calibration

The first stage of our model parameter identification process was to build a kinematic model of the robot. Based on the CAD model supplied by Sarcos, and verifying that model with our own measurements, we constructed an initial kinematic model. The Sarcos biped senses joint angles using linear plastic-film potentiometers, which provide

excellent linearity and a scale factor that does not vary significantly over time. We needed to calibrate the linear scaling and zero-offset of these position sensors to sense accurate joint angles. Additionally, because the zero offsets tended to shift over time, we used a combination of an initial calibration procedure that established both the scaling coefficients and the zero-offsets, and an on-line recalibration procedure that corrected for drift in the zero-offsets.

5.1.1 Initial Calibration

We performed initial kinematic calibration using accelerometers fixed to the robot's feet and legs. With the hip fixed to a rigid stand we were able to measure the difference in the observed gravitational acceleration between the first and last links of each leg. We moved each joint in a sinusoidal trajectories to explore the space of possible configurations. To avoid redundant configurations, we chose frequencies for the sinusoidal trajectories that were prime relative to each other. To minimize the error in the measurement of the gravity vector, we limited the maximum acceleration of the feet by using a maximum sinusoidal trajectory frequency of 0.1Hz.

Once the acceleration data was collected we used a nonlinear optimizer [Gill et al., 2002] to establish values for the linear coefficients and zero-offsets that best reconstructed the observed data from the accelerometers. The objective function used for the optimization was the sum-squared difference between the predicted and observed accelerations at the distal accelerometer relative to the proximal accelerometer. The results of this optimization process can be seen in figure 5.1.

5.1.2 On-line kinematic recalibration

While the scaling coefficients for the calibration were stable over long periods of time, the zero-offsets for the position sensors shifted frequently. These zero-offset shifts caused errors in foot placement or center of mass position estimation on the order of a few centimeters. To correct this error, we developed a procedure to quickly recalibrate the zero offsets for the lower body. This procedure used a wooden jig that reliably positioned each foot at one of several locations by pressing two of its

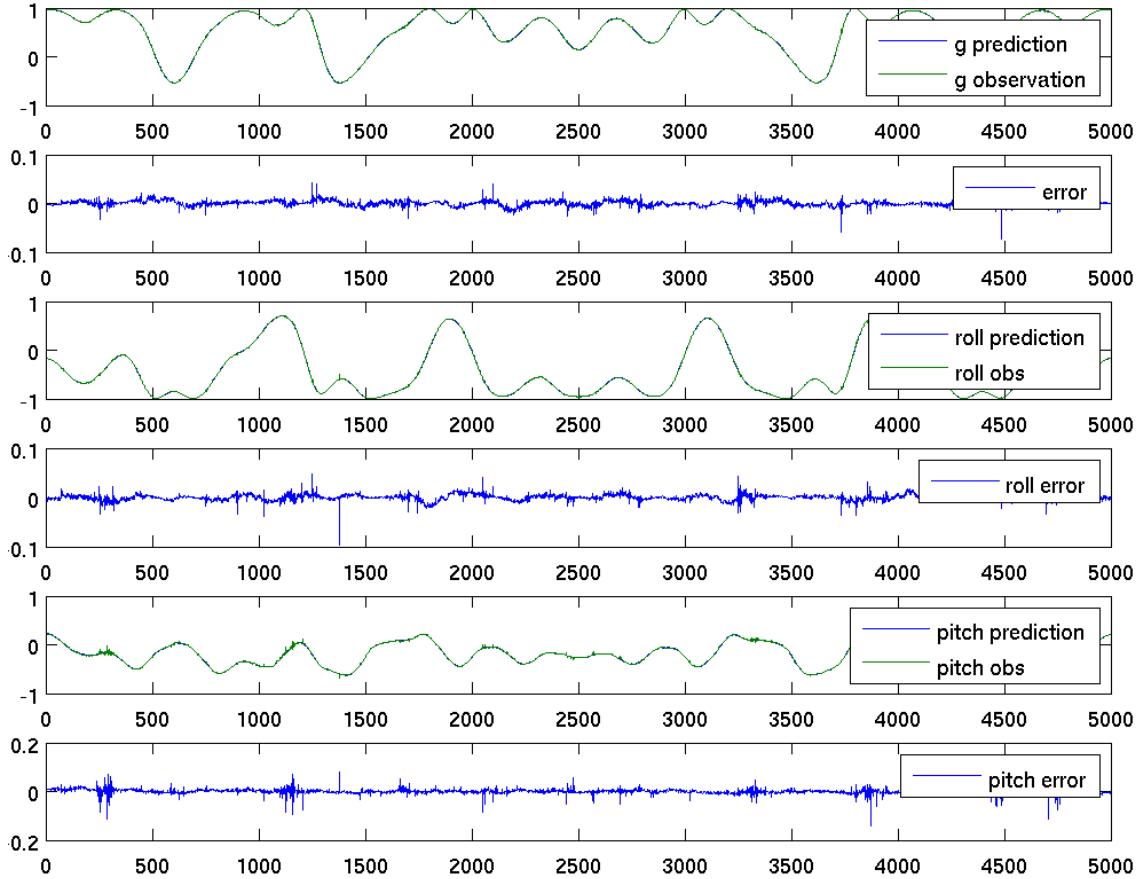


Figure 5.1: Observed and predicted accelerations at the foot after nonlinear optimization of the kinematic calibration parameters. Horizontal scale is sample index at 0.1 Hz. Pitch and roll are measured in radians. G is gravity vector projected onto Z axis.

edges against raised registration surfaces. We placed the feet at a sequence of known locations and recorded the joint sensor readings and hip accelerometer gravitational acceleration at each pose. Note that even with the feet fixed in known locations the hip can still move freely in six dimensions. To find the zero offsets, we minimized a cost function representing observation error over possible zero-offsets. This cost function was the weighted sum of the difference between the predicted and known position of the feet and the predicted and observed gravitational accelerations at the hip. The values resulting from this optimization produced reliable updates to the zero-offsets of the position sensors.

5.2 Load Calibration

Mechanical loads were measured using strain gauges attached at both the joint actuator linkages and the feet. The joint strain gauges measured strain in the linkage between the hydraulic piston and the rotational joint, and could be used to reconstruct joint torques. The foot strain gauges measured six-axis forces and torques between the foot sole plates and the outboard ankle body. We developed separate procedures for calibrating the joint and foot sensors.

5.2.1 Joint load sensors

We calibrated the joint loads by applying known torques to the joints and recording the resulting strain gauge excitations. These torques were applied with a hand-held strain gauge (IMADA DPS-44) connected to the same logging system that recorded the bridge excitations. We attached the hand-held strain gauge to a known location on the robot's body with a length of filament and used the tension on this filament to produce a test torque while the robot held a fixed position using an integral controller. Using a filament, instead of directly pushing on the robot with the strain gauge, reduced errors due to the angle of force applied. With a sufficiently long filament the error in the force angle due to a given offset in the position of the strain gauge can be made very small, as illustrated in figure 5.2. This figure shows that when a filament is used, a much larger position error is needed to produce the same error in the effective torque arm. The error in the effective torque arm is the difference between r and r' .

For each joint we recorded the sensor readings that resulted from four applied forces with different magnitudes, then used a least squares regression to find the scaling factor and zero-offset that best matched the observations. For the ankle joints, where the robot's physical structure does not provide an outboard point at a distance sufficient to generate large torques, we clamped a board to the robot's foot, and attached the strain gauge filament to this board in order to generate large torques about the ankle.

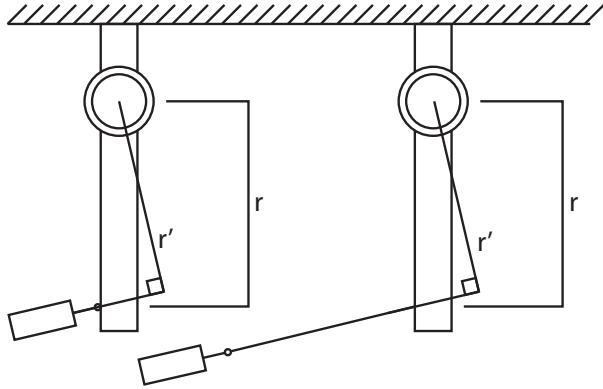


Figure 5.2: (left) Pressing the strain gauge directly onto the robot to produce a torque is sensitive to the orientation of applied force and the alignment between the applied force vector and the strain gauge. (right) Using a filament to connect the strain gauge to the robot reduces sensitivity to positioning error and aids alignment between the sensor axis and the applied force axis.

5.2.2 Foot load sensors

The foot sensors each contain eight strain gauge bridges and measured the six elements of the wrench applied by the ground to the inboard ankle body. Calibrating the foot load cells required the identification of a matrix with six rows and eight columns that transforms bridge excitations into foot wrenches. We used a calibrated six-axis force plate (Equitest MSA-6810) to measure the wrench applied to the robot's foot. We clamped the foot to a known location on the force plate, then applied forces to the inboard ankle body that caused matching loads to be applied to both the foot load cells and the Equitest force plate. We recorded both the calibrated wrench applied to the force plate and the excitation voltages at each of the eight strain gauge bridges, then computed the calibration matrix that minimized the reconstruction error in the excitation.

If the strain gauges were perfectly linear, the full calibration matrix would not be observable, because the number of strain gauges exceeds the number of dimensions in the observation space. Sensor noise and other small nonlinearities can cause the parameter matrix identification to be numerically unstable, because the extra degrees of freedom are used to try to fit this noise. To make the computation more robust,

we included a hand-tuned ridge regression term that penalized selecting regression coefficients far from zero. Without this ridge regression term very large coefficients appeared in the solution due to the redundant bridges.

5.3 Model Identification

We identified the parameters of the robot's rigid body model by collecting data from the robot and then computing offline updates to these parameters that minimized the difference between expected and observed sensor readings. Because the dynamics are linear in the parameters [An et al., 1988], we were able to use singular value decomposition to solve for the best parameters. By setting small singular values to zero, we changed only the parameters that were well determined by the available data.

By bolting a 5.76kg mass to a known position at the end of each leg and repeating the trajectories used for position calibration, we were able to simultaneously calculate the load cell scale factors for each joint, and the masses and first mass moment parameters of the rigid body model, as well as the calibration matrices for the foot load cells. Because the joint and foot load cell parameters had already been determined, we performed the model fit twice, once with the load cell scale factors, and once without. We were able to confirm that the model fit produced scale factors similar to those we had found with our per-joint procedure. Ultimately, we chose to use the model parameters produced by fixing the scale factors to the per-joint calibration values.

After completing the leg calibration with the robot's hip fixed to the rigid stand, we performed additional model calibration with the robot standing freely. We moved the robot through a sequence of postures while standing, and recorded both joint torques and contact forces. We extended the method described by [An et al., 1988] to include the additional parameters for load cell sensor calibration and a constant external force applied by the umbilical. Figure 5.3 shows the resulting agreement between the joint torques predicted by the model and those reported by the load cells. This graph shows the hip and knee flexion torques as the robot slowly moves

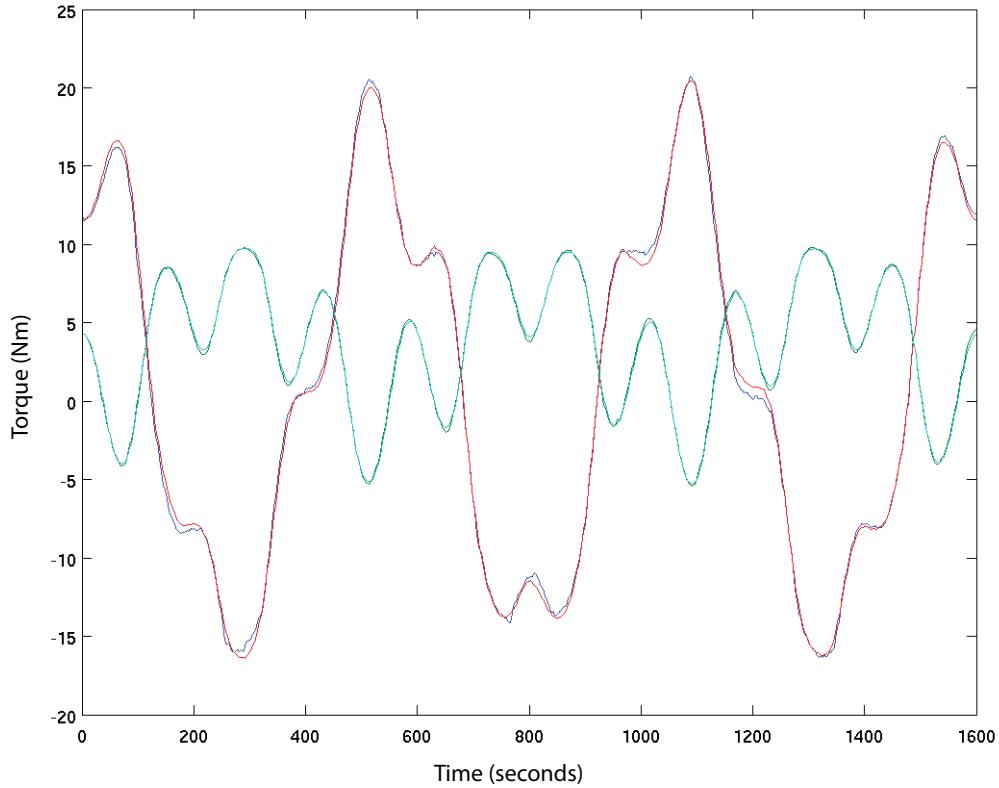


Figure 5.3: Observed and predicted torques at the hip and knee after mass model fit all joints through co-prime sinusoidal trajectories.

5.4 Model Adaptation

Error in predicting future states, particularly errors in contact forces, center of mass location, and total body momentum, can severely impact the performance of our model based controllers. We experimented with several techniques intended to reduce these errors. This section describes the techniques we used to adapt the parametric model of the robot to the conditions we encountered in each trial. We first describe model adaptations that were applied to the full model of the robot, then describe adaptations that were applied to the lumped mass model. For each model type, we

describe separately the adaptations that were constant during the entire trial and the adaptations that varied continuously during the trial.

5.4.1 Full model

Constant model adaptations

The predicted right hand side forces can have significant errors. Possible sources of these errors are external forces applied by the umbilical tether and gravitational load error due to inaccuracies in the model of the robot's mass distribution. We developed a technique to compensate for the zero-order components of these errors. Each trial begins with the robot at rest. In this state we know that both \ddot{q} and \dot{q} are zero. The joint and contact loads, τ and λ , are directly observable, and can be used to compute an observed right hand side force using those values:

$$\begin{aligned} RHS_{obs} &= \mathbf{S}\tau + \mathbf{J}_c^\top \lambda \\ RHS_{err} &= RHS_{mdl}(q, \dot{q}) - RHS_{obs} \\ \mathbf{M}(q)\ddot{q} + \mathbf{J}_c^\top \lambda + \mathbf{S}\tau &= RHS_{mdl} - RHS_{err} = RHS_{obs} \end{aligned}$$

We then subtract RHS_{err} from the right hand side forces when computing the inverse dynamics constraints during the trial. When the robot is in the initial pose and the expected acceleration is zero the commanded joint torques will be those that actually produce zero acceleration. This offset makes switching to a model based controller from an initial stance pose controller much more benign, because if the initial desired acceleration is zero then there will be no instantaneous change in desired joint torques.

Modifying the mass matrix, \mathbf{M} , can make model based control more robust to error. The modifications we experimented with were adding a constant offset to the diagonal and scaling the diagonal or off-diagonal elements of the mass matrix.

The first type of model error is the presence of unmodeled torques introduced by joint stiction, pressurized hydraulic lines that cross joints, and errors in the rigid body model parameters. If a particular joint has a small generalized inertia, then the torque that the model predicts is necessary to achieve normal accelerations may be

small relative to these unmodeled disturbance forces. Adding a constant offset to the diagonal of the mass matrix increases the output torques required to achieve desired accelerations, and has a proportionally greater effect on low inertia joints.

We can show that adding a term to the diagonal of the mass matrix is approximately equivalent to adding a PD torque gain policy to the joint torques selected by the policy mixer:

$$\begin{aligned}\ddot{q} &= -\mathbf{K}_{acc} \begin{bmatrix} q & \dot{q} \end{bmatrix}^\top \\ [\mathbf{M} + c\mathbf{I}] \ddot{q} &= RHS - \mathbf{S}\tau - \mathbf{J}_c^\top \lambda \\ \mathbf{M}\ddot{q} &= RHS - \mathbf{S}\tau - \mathbf{J}_c^\top \lambda + c\mathbf{K} \begin{bmatrix} q & \dot{q} \end{bmatrix}^\top \\ \mathbf{M}\ddot{q} &\approx RHS - \mathbf{S} \left(\tau + c\mathbf{K} \begin{bmatrix} q & \dot{q} \end{bmatrix}^\top \right) - \mathbf{J}_c^\top \lambda\end{aligned}$$

where $c\mathbf{K}$ is the PD gain matrix that is approximately equivalent to offsetting the mass matrix by $c\mathbf{I}$.

The off-diagonal elements of the mass matrix indicate the dynamic coupling between degrees of freedom in the system. By reducing the magnitude of these elements of the matrix, we bias the system towards under-compensating for these couplings. This decision also tends to make the system behave more like a pure decoupled PD servo policy. We found that scaling the off-diagonal terms in the mass matrix could increase the stability of some inverse-dynamics based policy mixing controllers.

By tuning both the scaling and offset parameters, we were able to access a continuous space of control solutions that range from model based inverse dynamics to decoupled PD torque servos. In practice, for our experiments, we found that an offset of $3 \frac{kgm^2}{rad}$ and no scaling of the off-diagonal terms produced the best behavior on the seesaw task with a policy mixing controller. We used these mass matrix manipulation techniques only with the policy mixing controllers, not with the informed priority controllers.

Time-varying model adaptations

During dynamic balance tasks, controlling contact forces precisely is more important than controlling joint accelerations precisely. Additionally, because forces are sensed directly, unlike accelerations, we can adapt to force errors faster. We minimize contact force errors at the expense of joint acceleration errors by computing the contact force model error $\lambda_{err} = \lambda_{obs} - \lambda_{exp}$, where λ_{obs} is the current force and torque readings from the foot load cells, and λ_{exp} is the expected contact force computed from the current joint torques. Integrating λ_{err} and projecting it into joint coordinates produces a right hand side offset:

$$\hat{\tau}_{err} = C_\lambda \mathbf{J}_c^\top \sum \lambda_{err}$$

We add $\hat{\tau}_{err}$ to the right hand side forces in the inverse dynamics computation before solving for x . The error integration converges such that the expected contact forces match the observed contact forces. In our experiments, the constant value C_λ ranged from 0.01 to 0.001 with a 1kHz control rate. This value results in an effective bandwidth ranging from 10Hz to 1Hz. We determined C_λ by searching for the largest value that did not create oscillation, then reducing that maximum value by at least half to arrive at the value used during the experiments.

5.4.2 Simplified models

Because the reduced model state drives the high level control actions, errors in the estimation of this state can have the most significant effects on performance. We developed state estimation techniques that focus specifically on estimating the reduced model state accurately.

Constant model adaptations

When using a single mass model the position and velocity of the center of mass are computed using the rigid body model of the robot. Using this model to predict the center of pressure while the robot is at rest can result in errors of two or three centimeters. We use two techniques to improve the center of mass model. First, we

observe the center of pressure when the trial begins, and compute a constant offset to the center of mass estimate that places the center of mass over the center of pressure. Second, using data from several quasi-static trials we compute off-line, a linear model of the center of mass estimate error, and apply this scaling term to the center of mass estimate in future trials. The estimated center of mass becomes:

$$p_{com} = \mathbf{E}_{com} m_{com}(q) + e_{com}$$

Where p_{com} is the estimated center of mass, \mathbf{E}_{com} is the linear model of center of mass error computed from several earlier trials, and e_{com} is the center of mass offset computed at the beginning of each trial.

Time-varying model adaptation

With the policy mixing controller, we used Kalman filters to compute the time-varying error in the single mass model. A separate Kalman filter is used for the coronal and sagittal planes. The Kalman filter estimates the center of mass position, velocity, as well as the difference between the observed center of mass and the true center of mass. This estimate of model error is treated as an additional state, but is assumed to be constant except for process noise. The observations provided to the filter are the position and velocity of the center of mass computed from q and \dot{q} using the rigid body model, and the location of the center of pressure. The process and measurement covariances matrices are tuned so that the response time of the error estimate is approximately 0.5 seconds. This value is the lowest we could achieve without creating oscillation due to feedback between the control system and the model adaptation.

Chapter 6

Experimental Results

This chapter discusses the experimental results from our seesaw balance and bongo-board balance tasks. For the seesaw task, we review the experimental setup, then show data collected from trial runs of the task, and finally discuss the significance of these results. We verify that expected properties of policy mixing control were present, and discuss the need for online model adaptation when working with the robot hardware. In the bongo-board results section, we describe the robustness of the controller in simulation and its failure to balance using the hardware. We provide an analysis of why the controller failed in hardware, concluding that the contact dynamics between the force plate and the bongo-board’s roller could have introduced a small error in the estimation of the roller position that would have been sufficient to destabilize the system.

6.1 Seesaw Balance

We demonstrate that our policy mixing controller is capable of performing the seesaw balance task and responding to unexpected external disturbances. We also show that the model adaption methods we described in chapter 5 are essential parts of this controller, without which it does not function. This section begins with a description of the hardware and software configuration used to perform the seesaw balance experiments, then presents the experimental procedures used for each set of trials, and

finally discusses the results of those experiments.

6.1.1 Experimental Setup

In our experiments, the robot stood on the seesaw and either maintained its balance in the presence of unexpected pushes, or rocked the seesaw from side to side by moving its center of mass. In some trials, unexpected pushes were applied to either the robot's body or to the seesaw. The feet were not fixed to the board, but were prevented from sliding outward by raised ridges at the ends of the board. These ridges are intended to assist repeatable placement of the robot's feet on the board, rather than to prevent foot sliding. In all the experiments, we used a 3DM-GX2 IMU to sense the angle and velocity of the seesaw.

The software configuration we used for the experiments actively controlled only the fourteen joints in the lower body. The upper body was controlled by a stiff PD-servo policy that maintained a nearly constant pose. The initial postures for both the upper and lower body were found by manually tuning joint positions until the robot balanced statically on the seesaw while one end of the board rested on the ground.

We weighted the contact load, posture, and single-mass policies to give priority to the single mass policy and the contact load policy. The single-mass policy attempted to control the robot's center of mass motion in both the sagittal and coronal planes. The contact load policy prevented the edges of the feet from lifting off the ground by keeping the center of pressure within the area of support for each foot.

6.1.2 Trials

Our first trial was to slowly shift the desired position of the center of mass. This objective was achieved by slowly changing the desired center of mass position in the lumped mass balance policy. As it tracked the desired position, the center of mass would pass over the rotational axis of the seesaw. When this event occurred the seesaw rotated until the opposite end struck the ground.

When we performed this trial, we found that as the robot compensated for the board's unexpected rotation, it caused the board to move back to the left. Then, as

the desired center of mass continued to move to the right, the board shifted one final time, and came to rest with its right end on the ground. To provide some hysteresis, we moved the desired center of mass slightly further to the right when the board was tipped to the right. The online Kalman center of mass estimator (section 5.4.2) and contact force integrator (section 5.4.1) were both essential to the success of this trial. Their performance is shown in figure 6.2.

In the second and third trials, we manually forced the seesaw to move by pushing on the board. In the second set of trials, we forced it remain in place for a period of time. In the third set, we immediately allowed it to return to the left. The robot was able to accommodate these unexpected disturbances, as seen in the accompanying video and figure 6.3.

We also experimented with removing each of our model adaptation techniques individually. We found that removing some model adaptations led to immediate failure. These adaptations were the initial full model and reduced model RHS force offsets, and the inertia matrix diagonal offset. Removing any of the online model adaptation techniques resulted in failure once the system was perturbed.

6.1.3 Discussion

We were surprised that such extensive online correction was required, given the apparent success of the offline model identification procedure. However, because the balance controller must bring the center of mass close to the edge of the contact region, balance can fail due to center of mass errors on the order of only a few centimeters. Considering that the magnitudes of the errors introduced by umbilical hose forces and mass model errors are on the order of a few centimeters, the need for these additional corrective measures is not unreasonable.

For example, suppose that the hydraulic umbilical is applying 40N of lateral force to the robot. This force is representative of the lateral force magnitude we have observed when the robot is standing unsupported on a calibrated force plate. Because the only connection between the robot and its environment are the umbilical and the force plate, and non-gravitational force observed by the force plate must be due to

the hose forces. With a body weight of about 900N, this lateral load will cause a center of pressure displacement of slightly more than four centimeters.

In a static trial, the center of mass position estimator will converge to estimating that the center of mass is located directly above the observed center of pressure. This error-integrating behavior causes the single-mass sub-policy to eventually drive the observed center of pressure to its desired position. Because there is an offset between the true center of mass and the center of pressure, the expected steady state center of mass displacement is four centimeters.

A calibration error in the ankle zero-offset on the order of 0.02 radians would also be typical for our robot. Given a center of mass height of 0.8 meters this error results in an additional two centimeter mass displacement. Six centimeters error in the center of mass location is easily enough to destabilize the robot during normal balance, and explains the need for online model error correction even given a completely accurate offline mass model.

As we predicted, policies with larger weights dominated the output, while policies with smaller weights operated primarily in the null space of these high-weight policies. Figure 6.1 shows that low weight policies had larger differences between their desired and actual control outputs than did the higher weight policies. For example, the lumped mass policy's error is expressed in terms of the moment about the desired center of pressure. When the policy's desired output is achieved exactly, this value will be zero. During the trial, the moment about the desired center of pressure had a maximum magnitude of 0.02N. Given a typical surface normal load on the order of 900N, this moment represents an expected center of pressure displacement of less than a millimeter. By contrast, the difference between the low-weight joint torque policy's desired left ankle flex torque and the applied torque had a maximum magnitude of about 50N. A 50N change in ankle torque corresponds to roughly a 5cm displacement in the center of pressure location. This result is consistent with finding a torque output that minimizes the weighted action error $\sum_i w_i U_{err_i}$.

Finding values for the Kalman filter process and noise covariance matrices that produced fast convergence without oscillation, tuning the contact force integration constant, and selecting the full body PD servo gains all required significant trial

and error. Selecting these values was difficult because the stiffness and damping of the balance and full body controllers determines how quickly the error estimators can be allowed to converge without oscillating, and vice-versa. This interdependence is another example of tight coupling between the offline configuration of separate components of the control architecture.

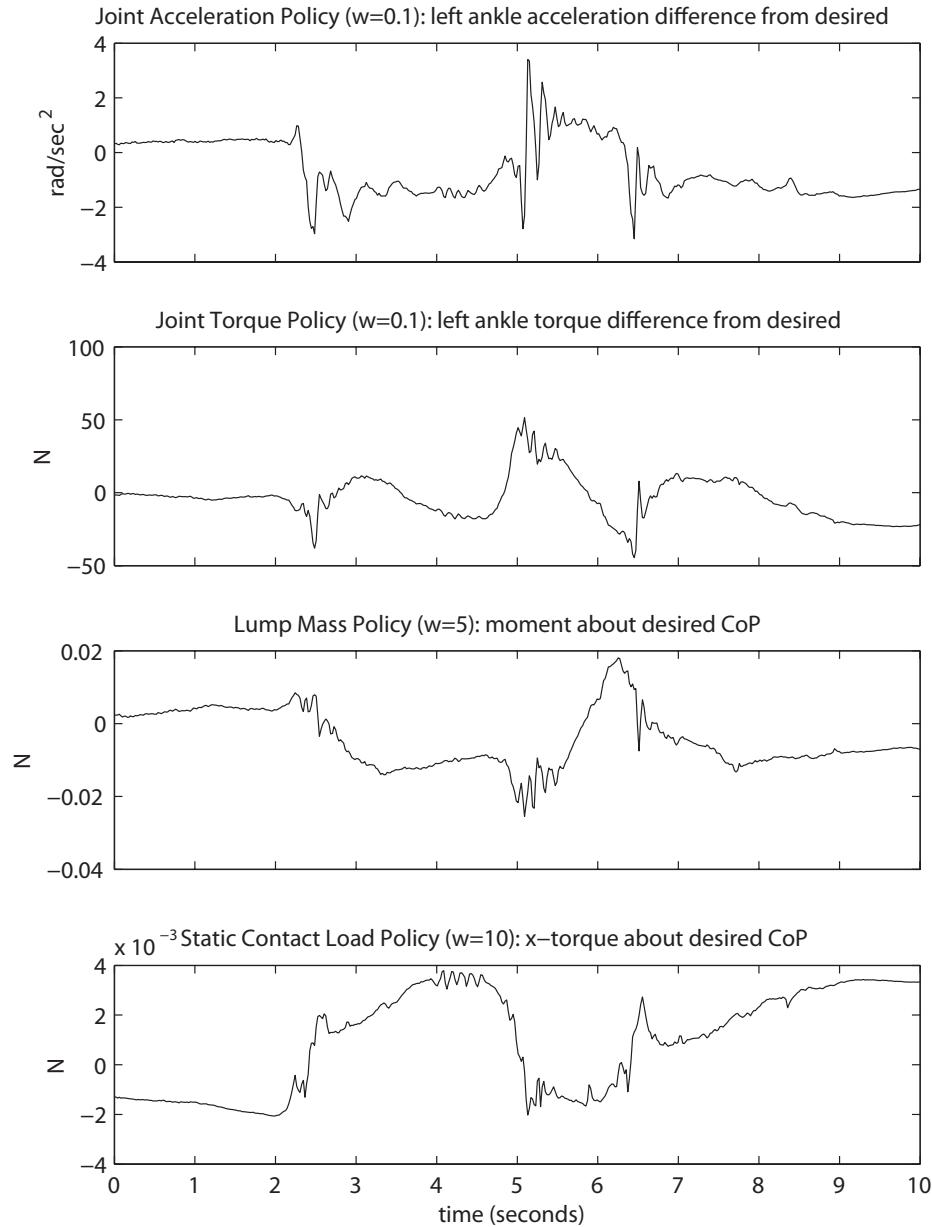


Figure 6.1: Policy dominance during trial with no external disturbances. The difference between the desired action for each component policy and the final action selected by the policy mixer is shown. For the PD servo policies, only the action associated with the left ankle flex/extend joint is shown. For the lumped mass policy, the moment about the center of pressure along the Y axis is shown. For the static contact load policy, the moment about left foot along the X axis is shown.

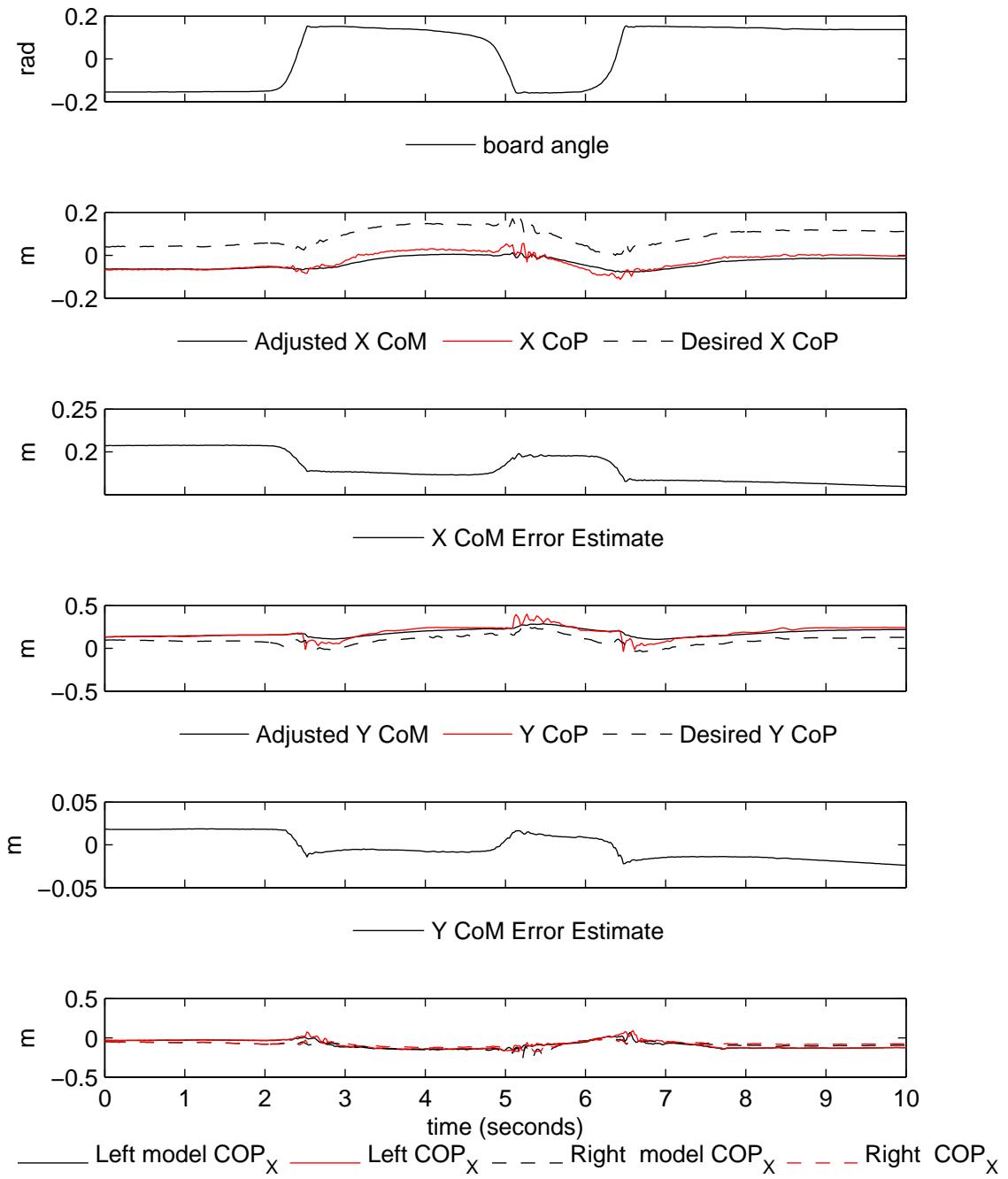


Figure 6.2: Model adjustment during trial without external disturbance.

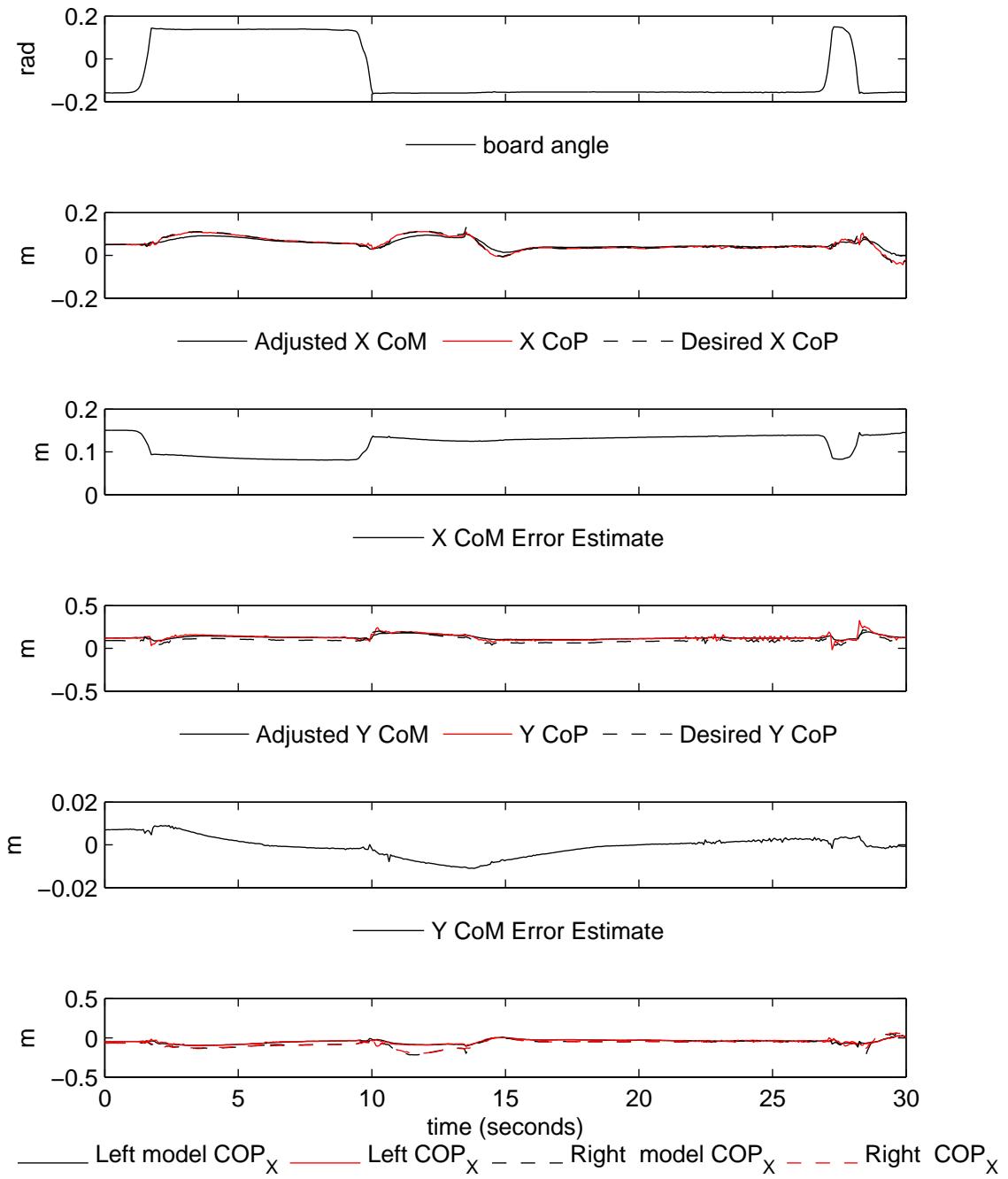


Figure 6.3: Model adjustment during external disturbance.

6.2 Bongo-Board Balance

We conducted balance experiments with a bongo-board setup that included additional sensors intended to simplify the control problem. The bongo-board's roller was constructed using a 6 inch diameter section of PVC pipe with three strips of high-friction grip-tape applied on equally spaced radial bands. The bongo-board's board was constructed from $\frac{3}{8}$ inch birch plywood reinforced with 1 by 2 pine strips fastened along each edge of the board. These strips also provided a hard stop for positioning the robot's feet on the board in a repeatable position. The bongo-board was placed on a six axis force plate that continuously measured the load applied by the roller. This load was used to compute the center of pressure on the force plate. Ideally, that center of pressure lies along the line of contact between the roller and plate, and indicates the position of the roller during balance.

We also experimented with hard rubber and soft foam coverings for both the force plate and the bottom of the board. These coverings increase friction, eliminating unwanted stick-slip yaw motion between roller and force plate or board and roller. The coverings also change the dynamics of the bongo-board task, adding damping, slowing down roller motion, and increasing the roller torque needed to initiate roller motion.

The force plate used in our experiments was an AMTI Accusway. The analog signal from this force plate was amplified and digitized by an AMTI MSA-6 amplifier and processed at 200Hz by the control system.

6.2.1 Bongo-Board Simulation

In section 4.5, we described the informed priority control system for a Sarcos humanoid balancing on a bongo-board. This controller used two sub-policies. The task-level policy used a receding horizon controller based on a single linear model of the system. The inner policy was a linear feedback, gravity compensated, pose controller. This inner policy was designed to generate well damped responses to changes in the desired pose and to minimize the expected acceleration error due to scaling errors in torque outputs.

We tested the receding horizon controller using both full-state and reduced-state models of the system. The reduced-state model used two features of the full model as its state. These features were the lateral center of mass displacement and the bongo-board roller displacement. The board angle relative to the body was controlled, but not included in the system state. We limited the available action space to one or two dimensions, depending on the trial. For the action space basis, we selected low-inertia modes of the forward dynamics that changed the board angle and roller position without significantly altering the robot's center of mass.

The receding horizon controller used between ten and seventeen collocation points spaced at 0.2 second intervals. Using the reduced action space, the controller was able to produce control outputs in less than 1 millisecond given a good initial guess supplied to the QP solver. The previous solution for predicted action sequence worked well as this initial guess. We selected a reference pose by optimizing for joint angles that placed the center of mass over the roller while minimizing distance from the basic stance pose and maintaining the kinematic contact constraints. An exponential decay term was used to reduce the cost of states and actions that occurred further in the future. This decay term helped to reduce rapid changes in the current torque output due to predicted events far in the future.

6.3 Results

The simulated robot was able to balance successfully in trials using a range of control parameters and simulated model errors. We varied the cost functions used in the receding horizon controller, as well as the node spacing and look-ahead time. Additionally, we varied the stiffness and damping of the pose controller. Finally, we simulated constant offsets in the mass model and external disturbance forces to evaluate the effect these errors had on the performance of the system. These results can be viewed in the video included with this thesis.

The damping of the pose controller significantly affected the success of the overall controller. With excess damping the pose response was slow, and the system was

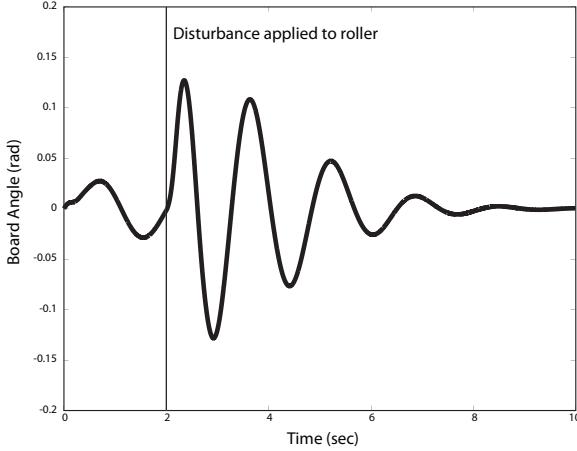


Figure 6.4: Board angle stabilizes in the presence of both a 50N disturbance applied for 0.2 seconds after two seconds, and a one centimeter offset in the estimated center of mass location.

unable to find trajectories that did not lead to failure. When the system was underdamped the trajectory planner attempted to damp out the oscillations by driving desired pose in counter-oscillations. This strategy failed due to its extreme sensitivity to model error.

As shown in the video, we found that the system was stable in the presence of constant offsets and scaling in the estimated center of mass and joint torque outputs. The controller did not fail given constant offset of one centimeter in the estimated center of mass location combined with a transient 50N lateral disturbance applied for 0.2 seconds to the roller. Figure 6.4 illustrates the evolution of board angle for this trial.

To evaluate the robustness of the simulated controller to the manual tuning of the base policy feedback gains, we experimented with several variations to the gains. Figure 6.5 displays the roller displacement traces for several trials with altered base policy gains. These alterations were doubling and halving the position feedback gains and doubling and halving the velocity feedback gains. For each new set of the gains, the controller automatically builds a new reduced model of the base policy and uses that model in the receding horizon controller. While the qualitative behavior of the system changed as the base policy gains were altered, the controller remained stable.

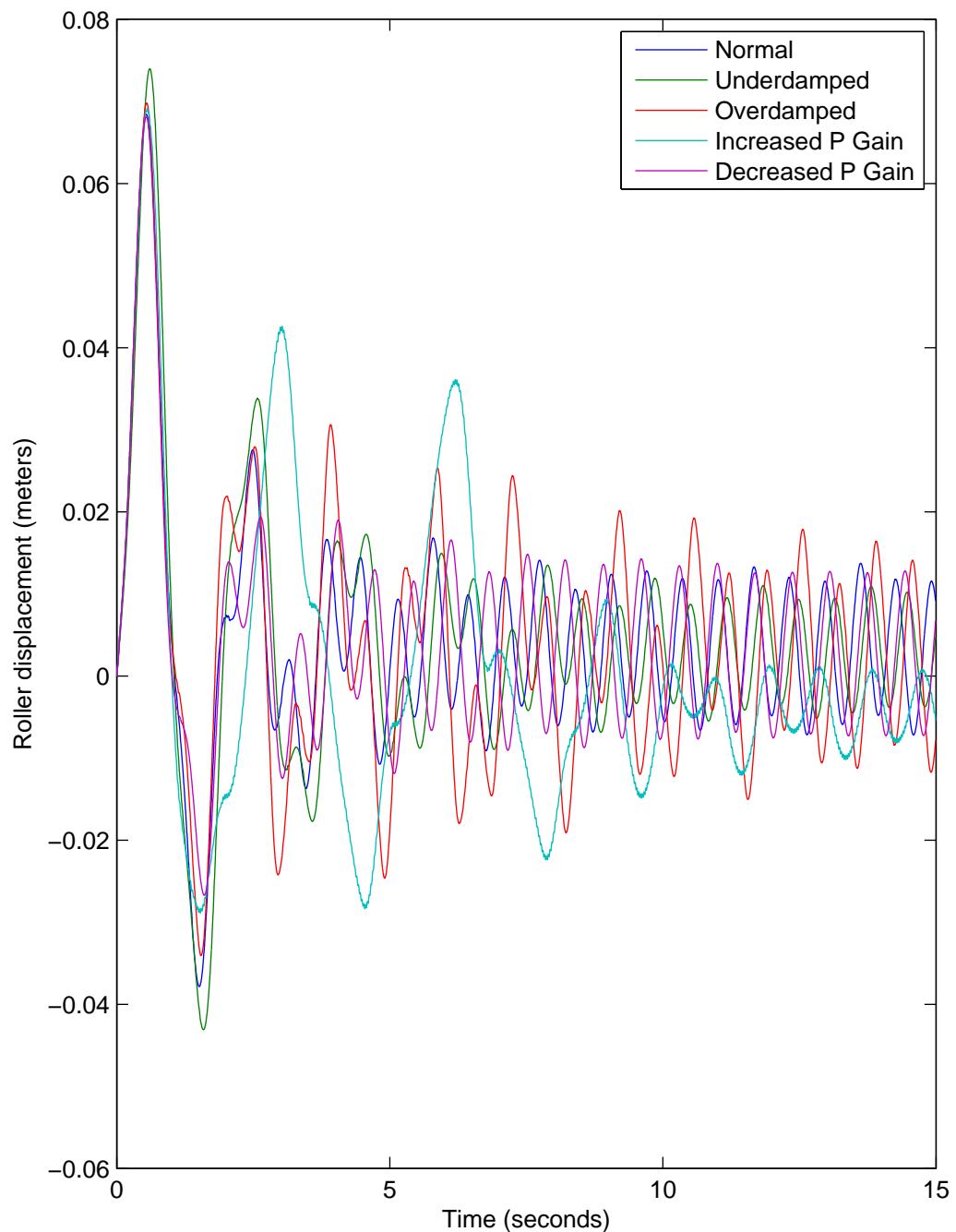


Figure 6.5: Roller displacement traces for several different base policy gain selections. Both position and velocity terms were doubled and halved independently.

Robustness to model error was of particular interest to us. We ran twenty trials in which the mass of each link was altered during only the model building phase. The altered masses were uniformly distributed within twenty five percent of their original values. The result of this change is that while all the simulations used an identical model, the model presented to the receding horizon controller varied in each trial and did not match the simulated model. In only one of the simulations did this mismatch result in failure, although several simulations converged slowly or to different steady state behaviors. It is important to note that while these model errors alter the predicted future behavior of the system (the **A** and **B** matrices in the linearized dynamics), they do not alter the observed state of the reduced model.

6.3.1 Mode Switching Control

We replaced the receding horizon control component with the mode switching controller described in section 4.11. The intent in performing this replacement was to make the control system more robust to sensor and model error in determining the system center of mass position. The controller interpolated smoothly between two output actions over a fixed time period. Once a transition was initiated no further transitions could be initiated until the first transition completed. Transition time was fixed at 0.3 seconds. The two output actions were a pair of mirror image poses that corresponded to tipping the board to the left and right without moving the center of mass.

We used a planar decision surface to initiate the output transition, rather than the grid based policy generated by the dynamic programming procedure. We derived the parameters for this decision surface using both a hand-tuned experimental process and the hybrid linear model described in section 4.11. We found that the policy produced by the grid based dynamic programming solution to the hybrid linear system was closely approximated by a planar decision surface, and that its parameters were very close to those derived by hand-tuning. We used a support vector machine to compute max-margin parameters for this plane. Both sets of decision surface parameters are listed in table 6.1.

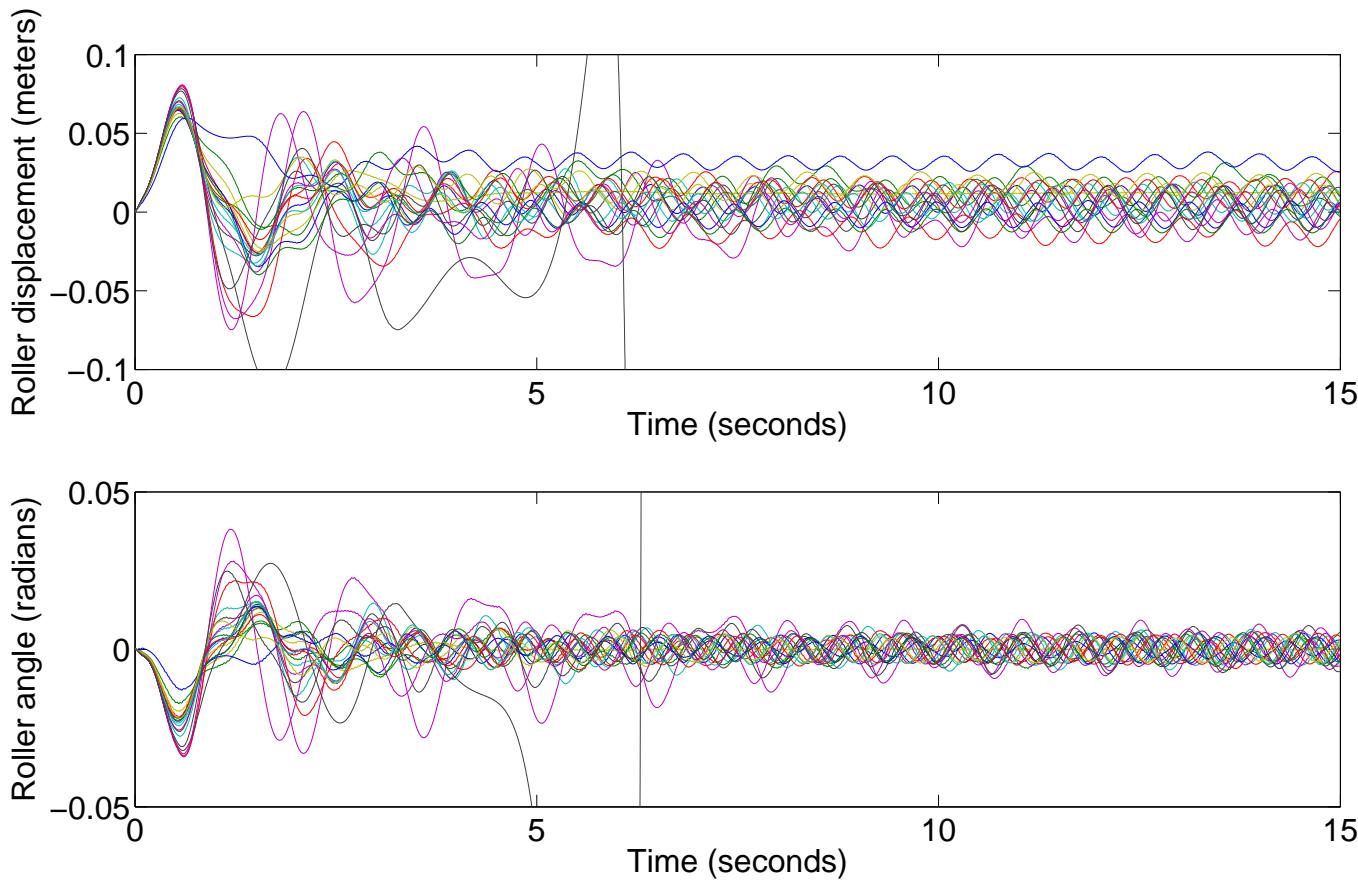


Figure 6.6: In each trial the mass of each body used to build the model has been altered by a uniformly distributed amount up to 25 percent of the simulated value.

Table 6.1: Decision Surface Parameters

	Hand Tuned	Model Based
X	0.6	0.4
Y	1	1
Z	0.17	0.11
ρ	0.3	0.32

We found that the switched mode policy performed better in hardware than the receding horizon controller. However, neither was able to reliably balance the robot on the bongo-board. Ultimately, neither the full model nor the reduced model was effective at predicting the future states of the system given the current state estimate given by our sensors.

6.4 Failure Analysis

Given that the task-level controller did not exhibit asymptotic stability in hardware, we wanted to understand what factors might have contributed to the difference in stability between simulation and hardware. To develop this understanding, we conducted several experiments in simulation. Each experiment added an additional element to the simulation that we suspected may have contributed to the failure in hardware. These additional elements included several sensing delays and sensing errors introduced by the roller-floor contact area. While all these elements were capable of destabilizing the simulation when configured aggressively, most did not produce a failure mode that reflected the failures we observed in hardware. Only the roller-floor contact area simulation produced the characteristic low frequency bang-bang control output we encountered in the hardware controller. Moreover, it produced this effect for very conservative tunings of the simulation, suggesting that the task-level bongo-board controller is very sensitive to this particular effect.

In hardware we had observed three distinct failure modes, two of which we were able to resolve with appropriate tuning. These first two were high frequency oscillation of the body pose, which was resolved by turning down the pose tracking damping gains. The second was increasing low frequency oscillations of the reduced order system, essentially the roller and center of mass would oscillate side to side two or three times, with the magnitude of the oscillation growing until failure. This second failure mode was resolved by tuning the pose controller to respond faster, but in doing so a third failure mode was encountered. In this mode, the output action oscillated at 3-7 Hz between its limits, eventually becoming unstable. Examples of these failure modes from hardware trials are shown in figures 6.7 and 6.8 (high frequency mode), figures 6.9 and 6.10 (bang-bang mode), and figures 6.11 and 6.12 (increasing oscillation mode).

Our initial hypothesis was that phase lag in the pose controller was causing the predicted and observed behavior of the reduced model system to diverge. The reduced model is built using the assumption that the body pose is precisely equal to the desired body pose, without respect to how quickly the desired body pose is changing. This

assumption is violated when the pose controller cannot precisely track the desired pose produced by the task controller. The result of violating this assumption is that the reduced model system no longer behaves according to the model built using the assumption of perfect tracking.

The first step in testing this hypothesis was to verify that violating the assumption that the pose tracked the desired pose precisely produced significant changes in the evolution of the reduced model state. To test this assumption we conducted two simulated trials that began with identical reduced model state (i.e., the roller and the center of mass in identical locations) and used a constant pose control input, but had different initial body postures. In the first trial, the initial body pose matched the constant desired pose exactly, while in the second trial a neutral initial pose that did not match the desired pose was chosen. The initial reduced model state for both trials was identical, and the task-level control input was identical, but the systems behaved differently while the desired and actual poses did not match. This result is shown in figures 6.13 and 6.14.

Having established that pose tracking performance could have a significant impact on the behavior of the reduced model system we conducted additional trials to determine whether the performance impacts of changing pose tracking behavior produced the specific failure modes we had observed in hardware. We augmented the pose-control generation procedure described in section 4.6 with two additional inputs. One input, K_p , scaled the output gain matrix linearly. The second input, K_s , scaled the damping gains relative to the expected value needed to achieve critical damping. By varying these two parameters, we were able to rapidly generate several sets of gains with different tracking performance. We evaluated the performance of these different gain configurations in their response to a step input in command signal. These results can be seen in figure 6.15, demonstrating that the range of gain configurations significantly altered the time needed for the system to converge to the desired pose, as well as secondary characteristics of the performance, such as overshoot and oscillation. To determine whether any of these gains produced changes in performance that matched the hardware failure, we simulated the full controller using each set of gains. We found that low gains produced slowly increasing oscillations

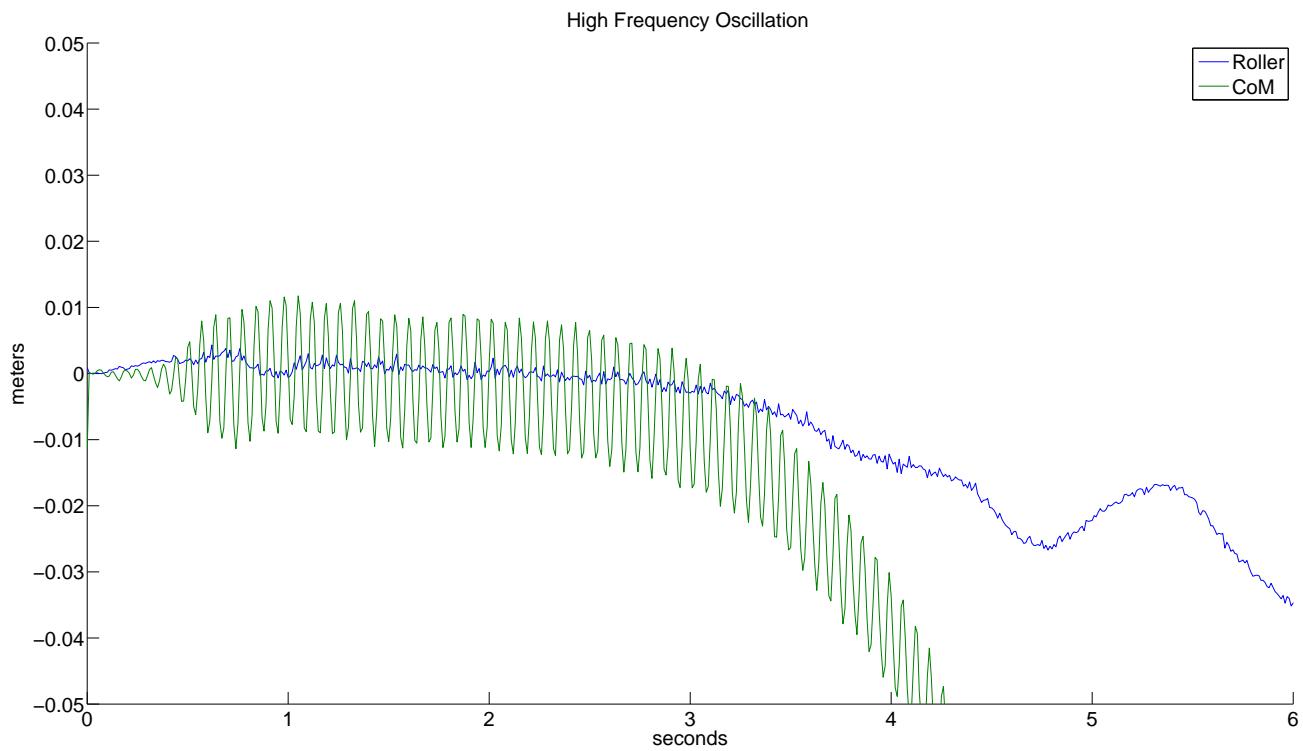


Figure 6.7: High Frequency Failure (State)

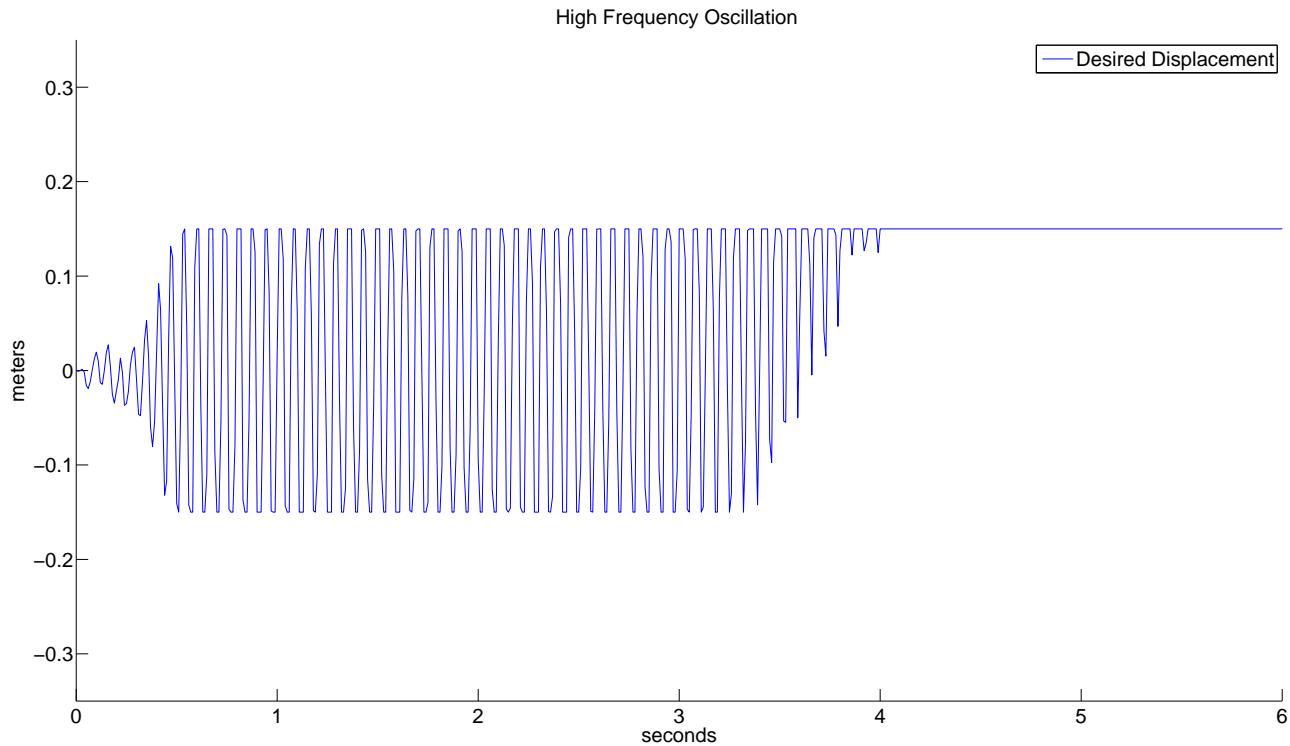


Figure 6.8: High Frequency Failure (Action)

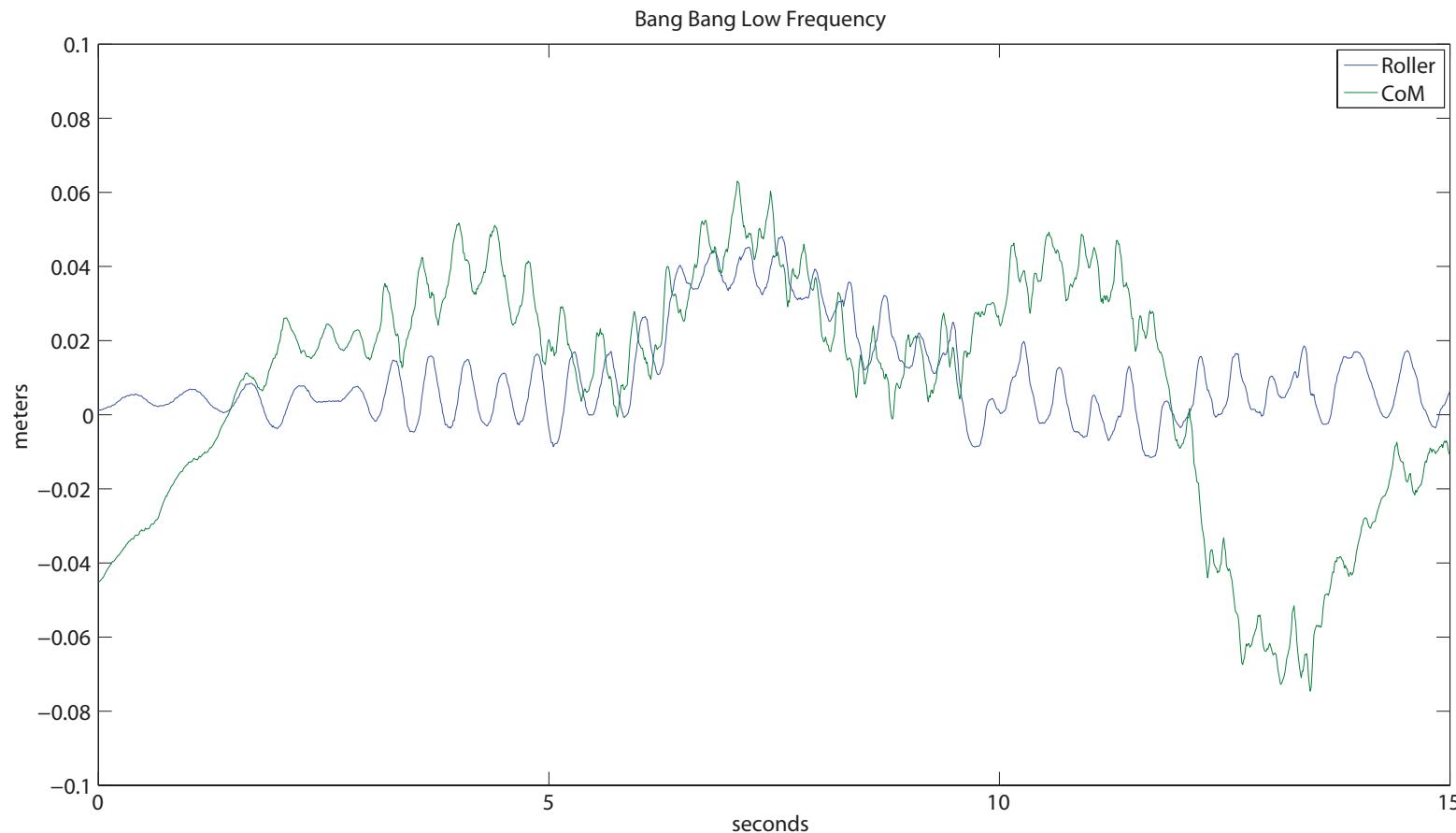


Figure 6.9: Bang-Bang Failure (State)

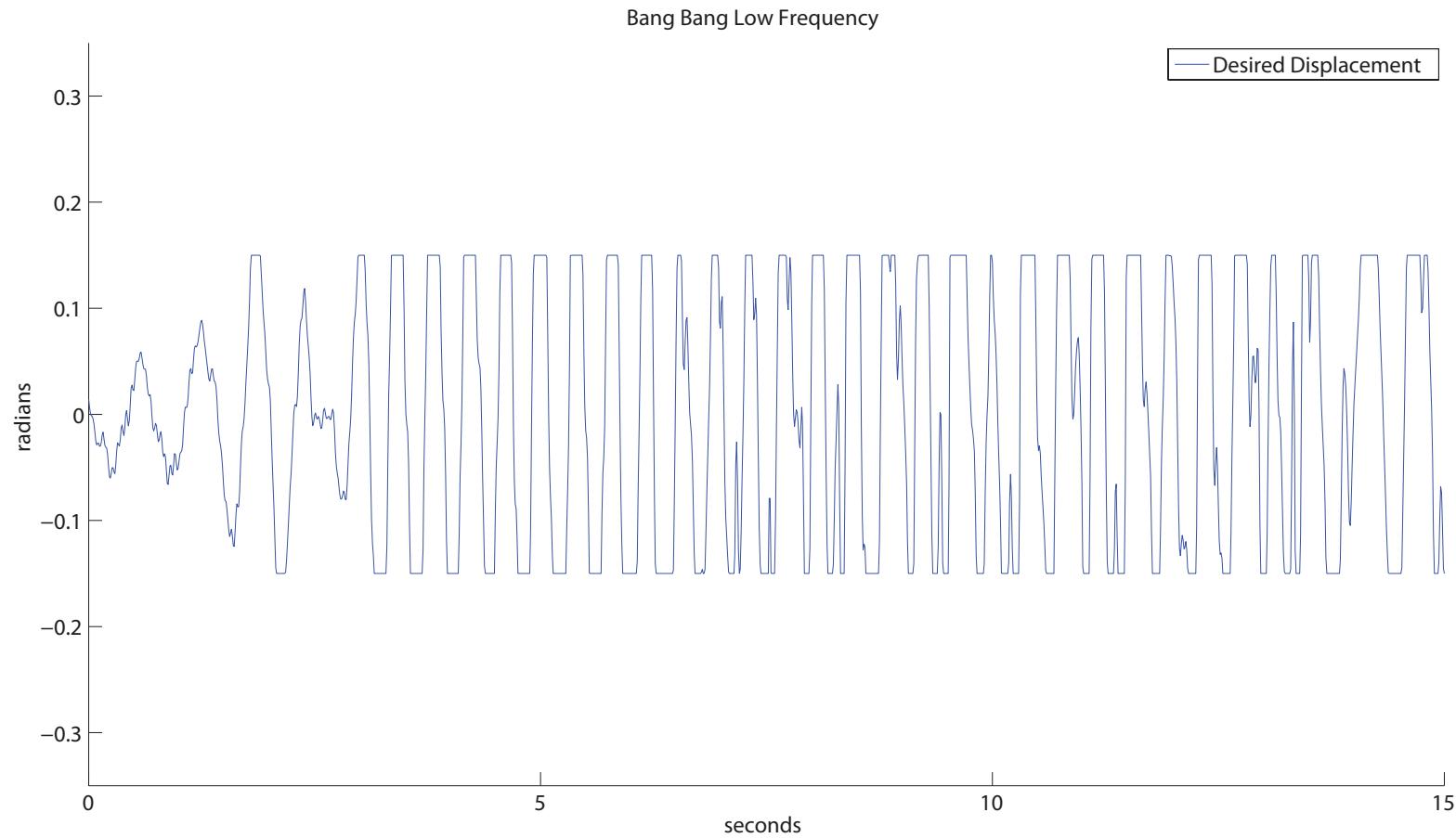


Figure 6.10: Bang-Bang Failure (Action)

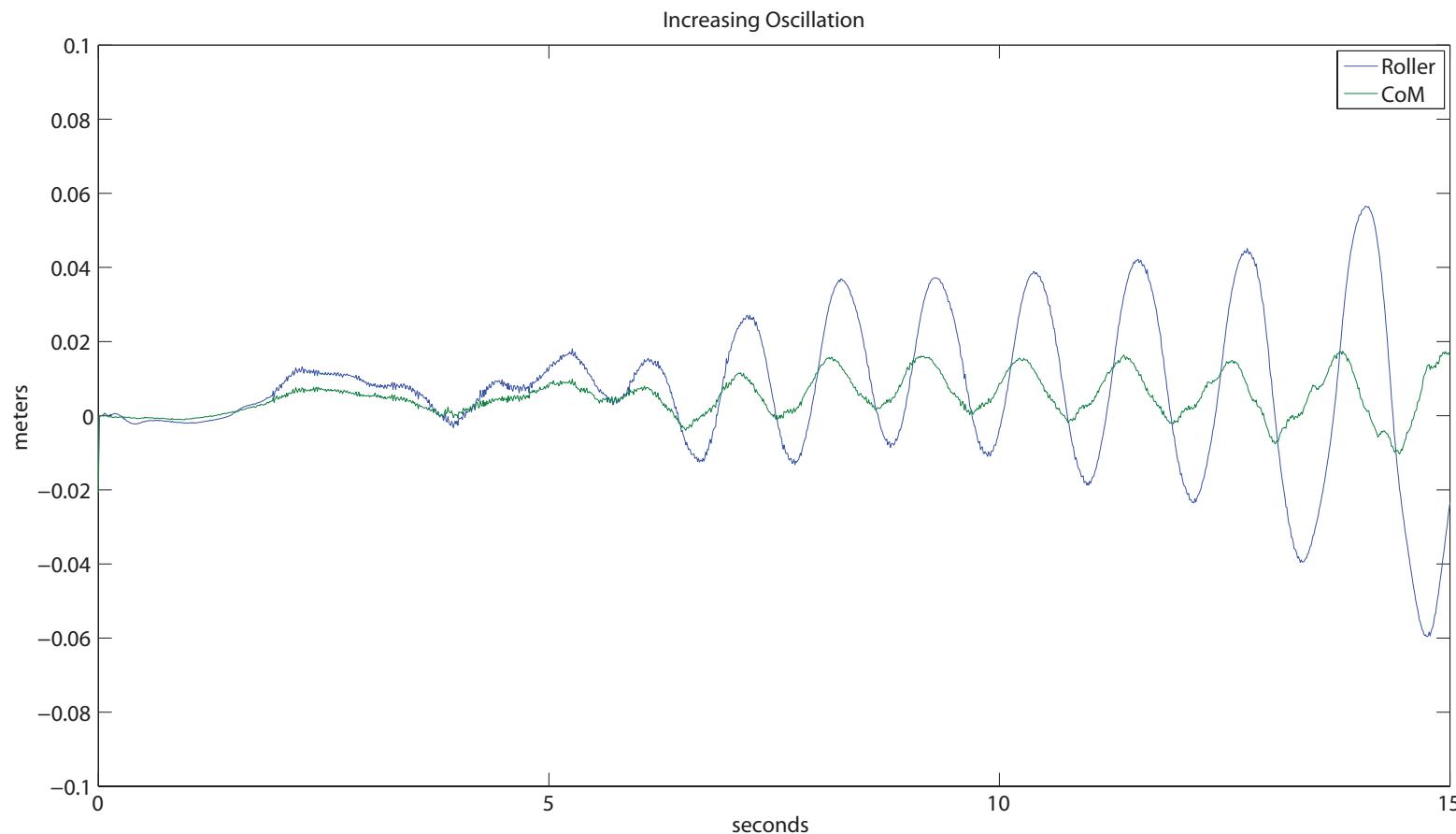


Figure 6.11: Increasing Oscillation Failure (State)

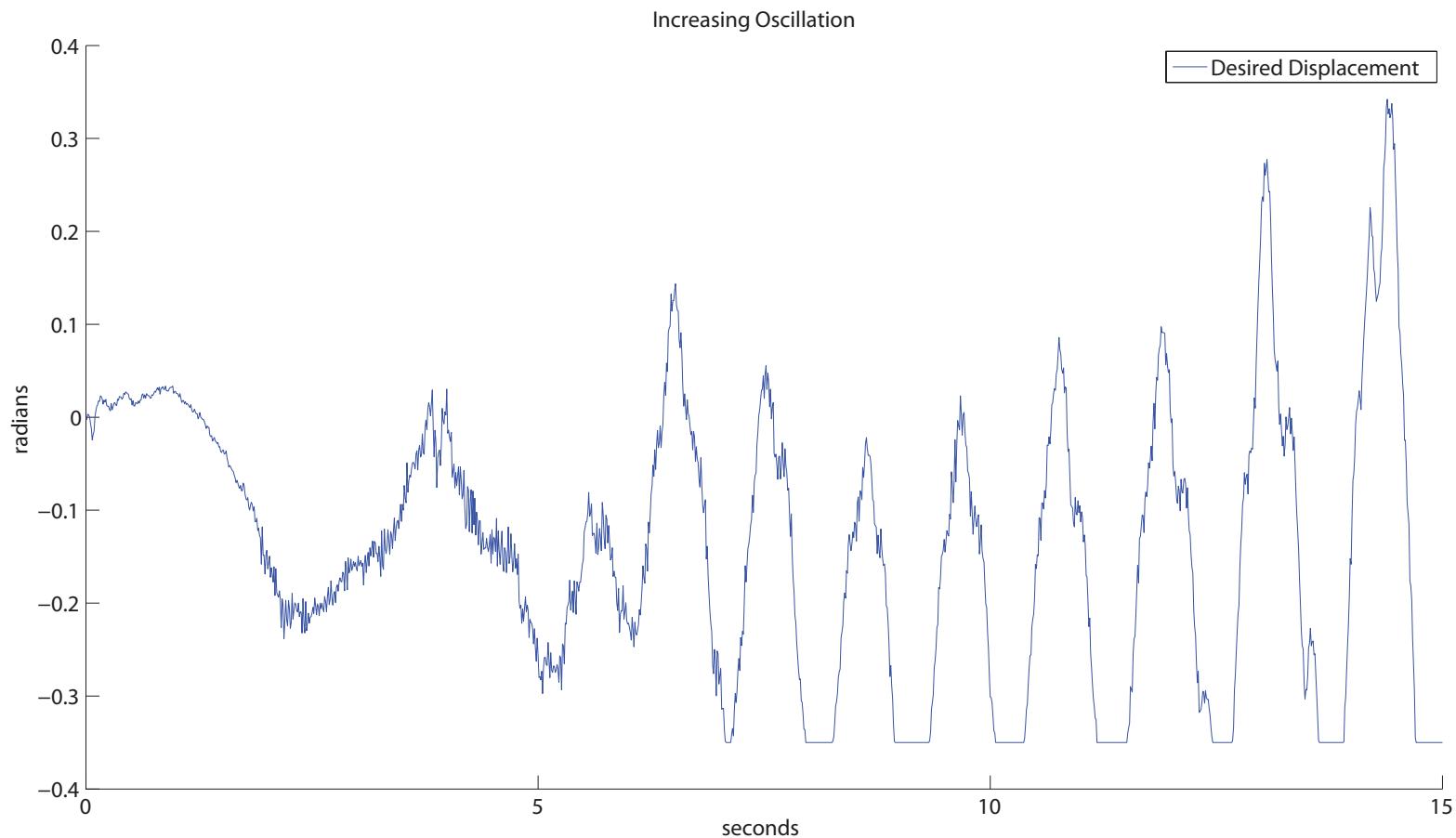


Figure 6.12: Increasing Oscillation Failure (Action). Clipping at -0.3 radians reflects software limits on output control signal.

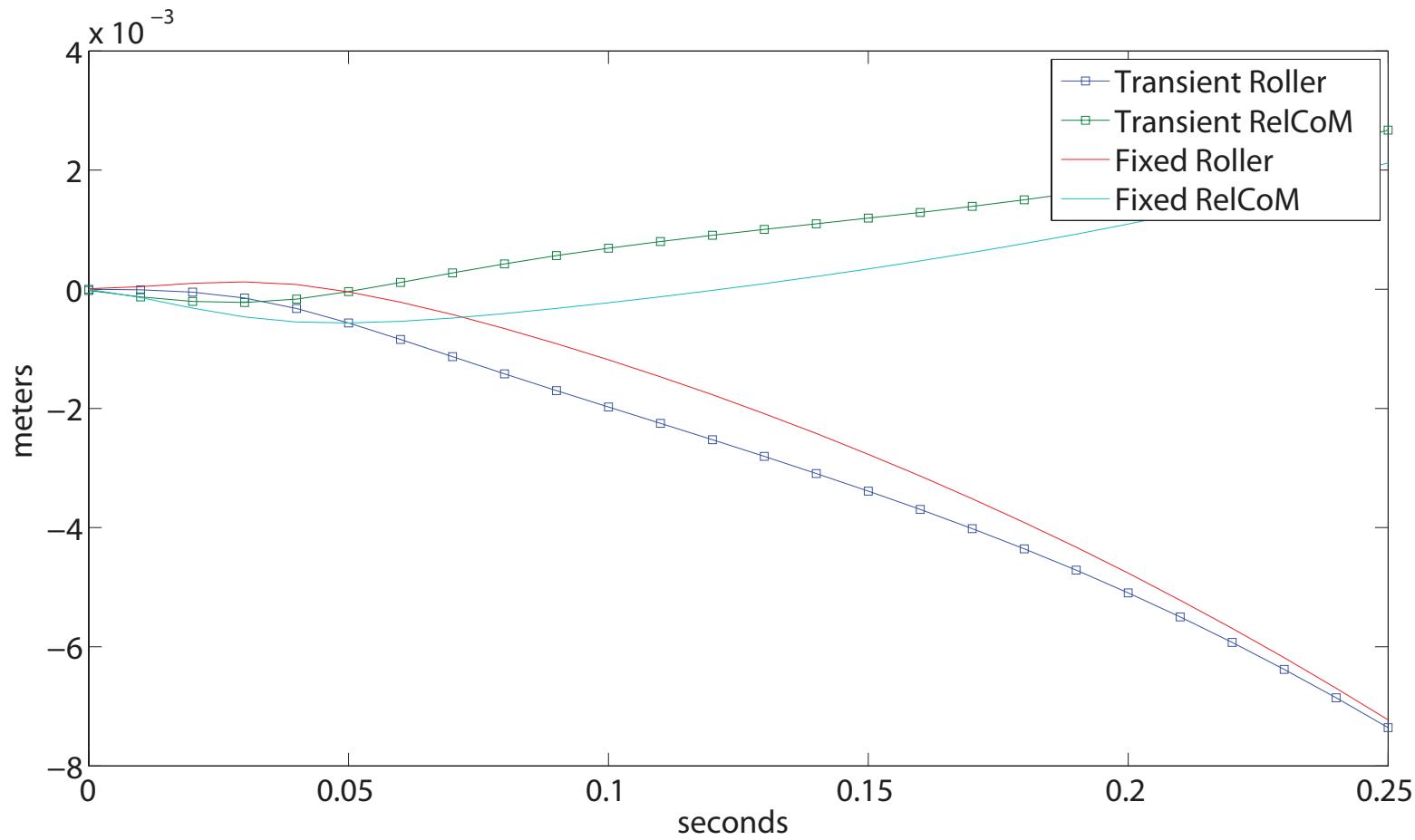


Figure 6.13: Action transient trial state trajectories

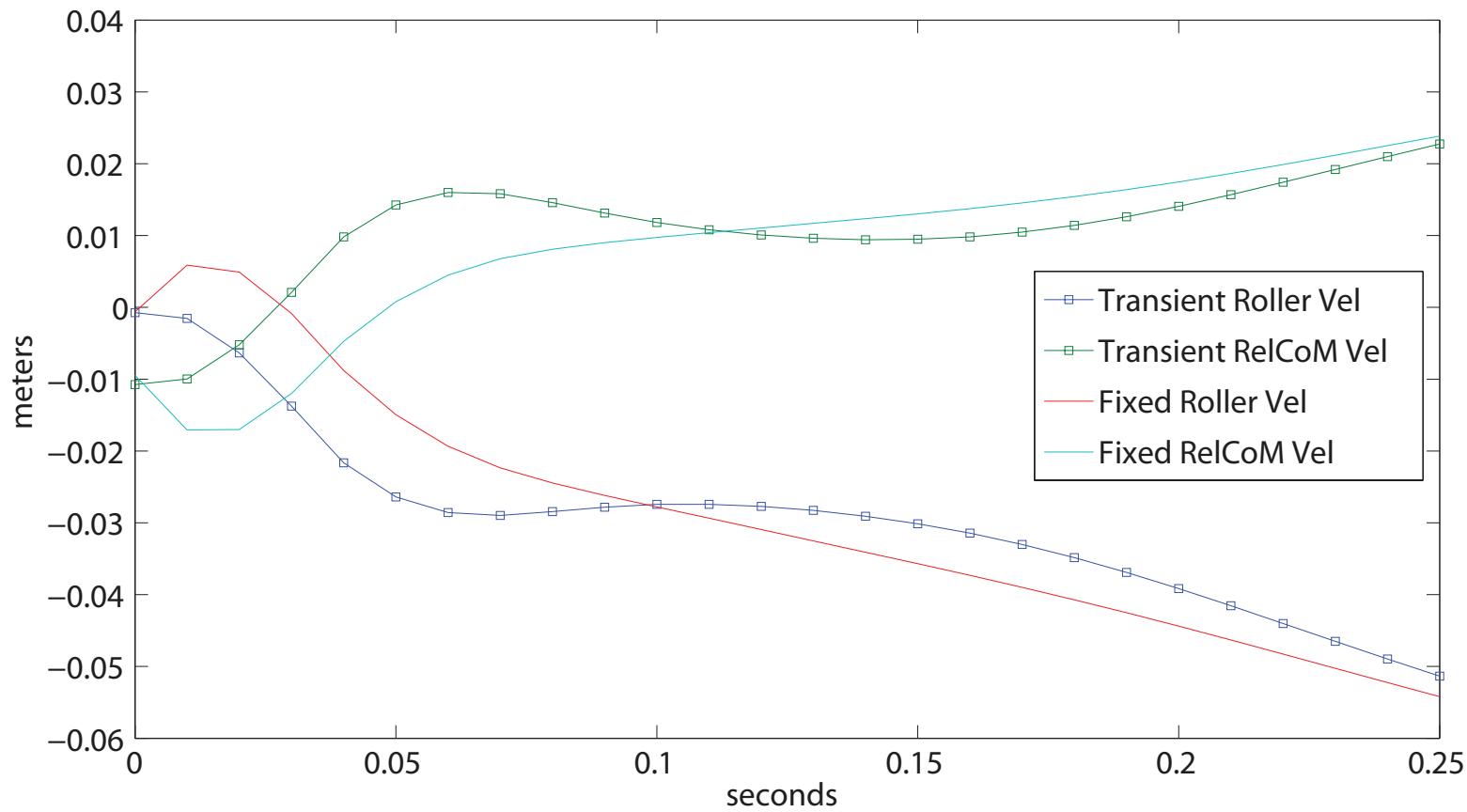


Figure 6.14: Action transient trial command trajectories

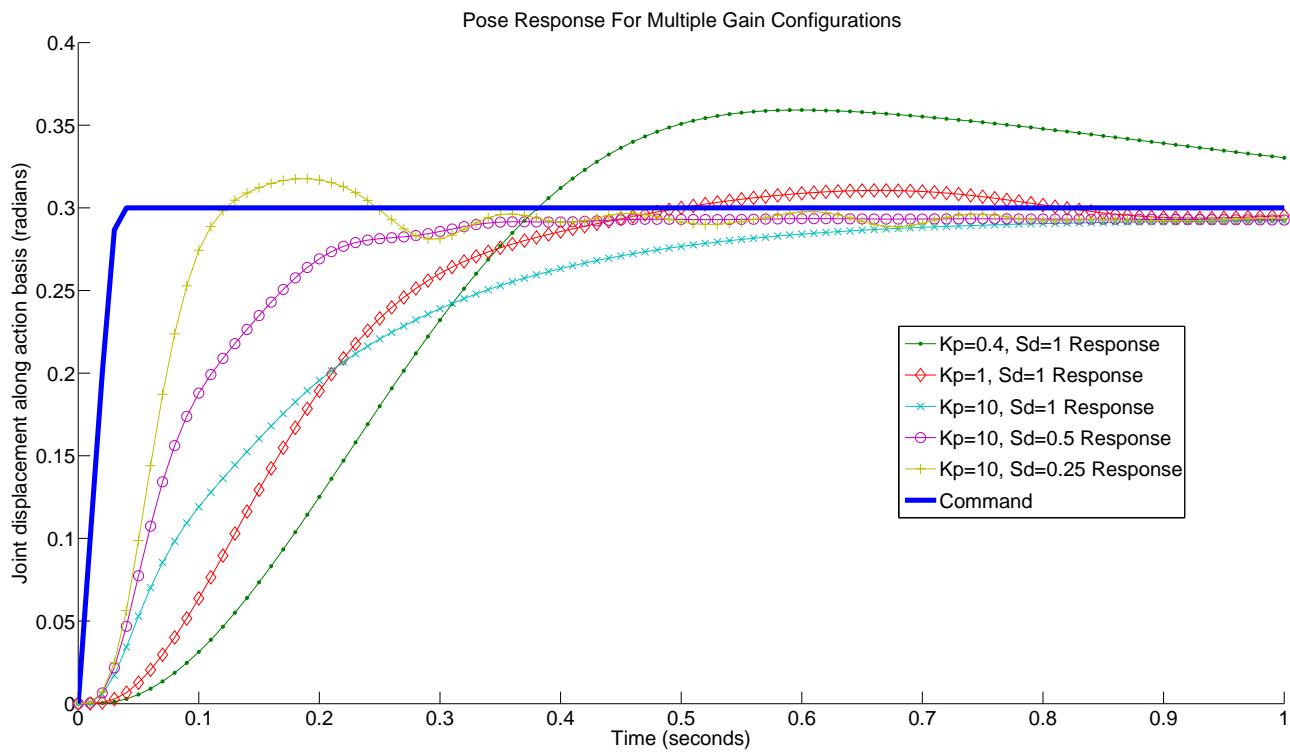


Figure 6.15: Variations in pose tracking behavior induced by choosing different gain tuning parameters. The displacement value shown is the magnitude of the body pose projected onto the action basis vector.

in the reduced model state, while gains that were tuned too stiffly produced unstable pose control at much higher frequencies (approximately 10Hz). These results are shown in figures 6.16 and 6.17.

These results showed that values of K_s that were either too low or too high would cause the system to fail. While we did observe both the slowly growing oscillations that occurred with $K_s = 1$ and the high frequency pose control failure that occurred when $K_s = 0.5$, neither of these exhibited the low-frequency bang-bang command signal we encountered in hardware. These failures agree with our intuition about how the value K_s should affect performance. Higher values of K_s result in pose controllers with longer transients, which make the task-level controller unable to compensate quickly for errors, while lower values underdamp the pose controller and lead to increasing high frequency oscillations. We attempted to produce the low-frequency bang-bang failure mode by including additional features in the simulation. A comparison between increasing oscillation failure in hardware and simulation is shown in figures 6.18 and 6.19.

We introduced several additional features into the simulation and tested each in isolation. These features were joint velocity signal delay, IMU velocity signal delay, IMU position signal delay, and roller position error introduced by roller contact dynamics with the force plate. Introducing signal delays easily destabilized the pose controller, the task controller, or both, but the failures were similar to those we had already observed in the gain configuration trials. The most significant difference being that we could produce both the high-frequency pose controller oscillations and the low frequency task-controller oscillations simultaneously. Figure 6.20 illustrates the results of the signal delay trials. The most striking feature of these results is that the system is relatively insensitive to delays in the IMU angular rate signal. This observation produced the hypothesis that the reduced model state velocities were determined largely by the force plate state signals, and that simulating errors in these signals might produce the velocity-dependent bang-bang control outputs we had seen in hardware.

The roller contacts the force plate through a layer of foam rubber that prevents the roller from spinning around the vertical axis. As the force applied to the roller

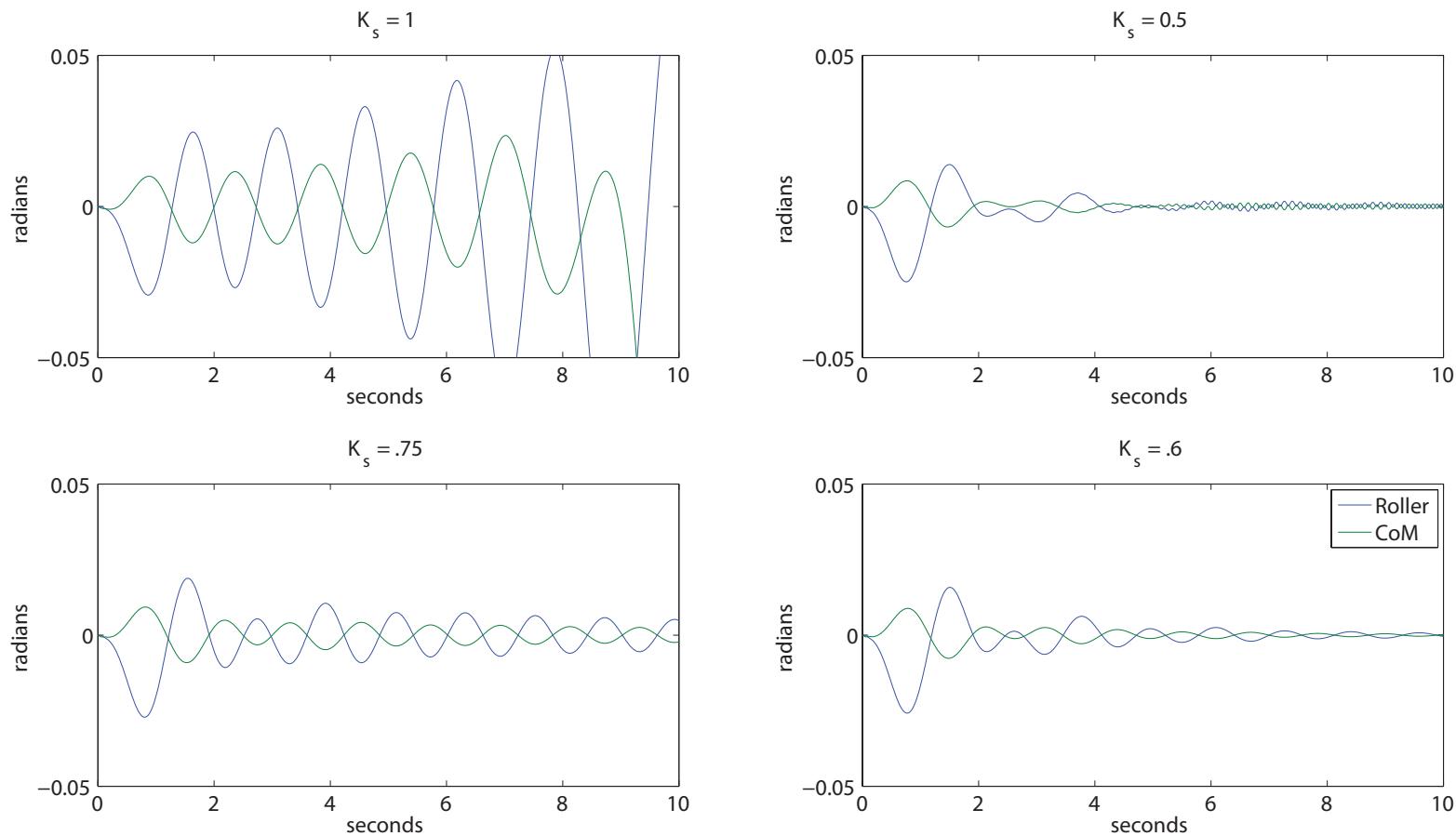


Figure 6.16: Four trials with varying effective damping. K_p was set to ten in each trial, but K_s varied from 0.5 to 1. For low values of K_s the system responded quickly and the task-level controller damped out oscillations in the reduced model state (e.g. $K_s = 0.5$, upper right), but the pose controller itself was unstable resulting in high frequency pose oscillations.

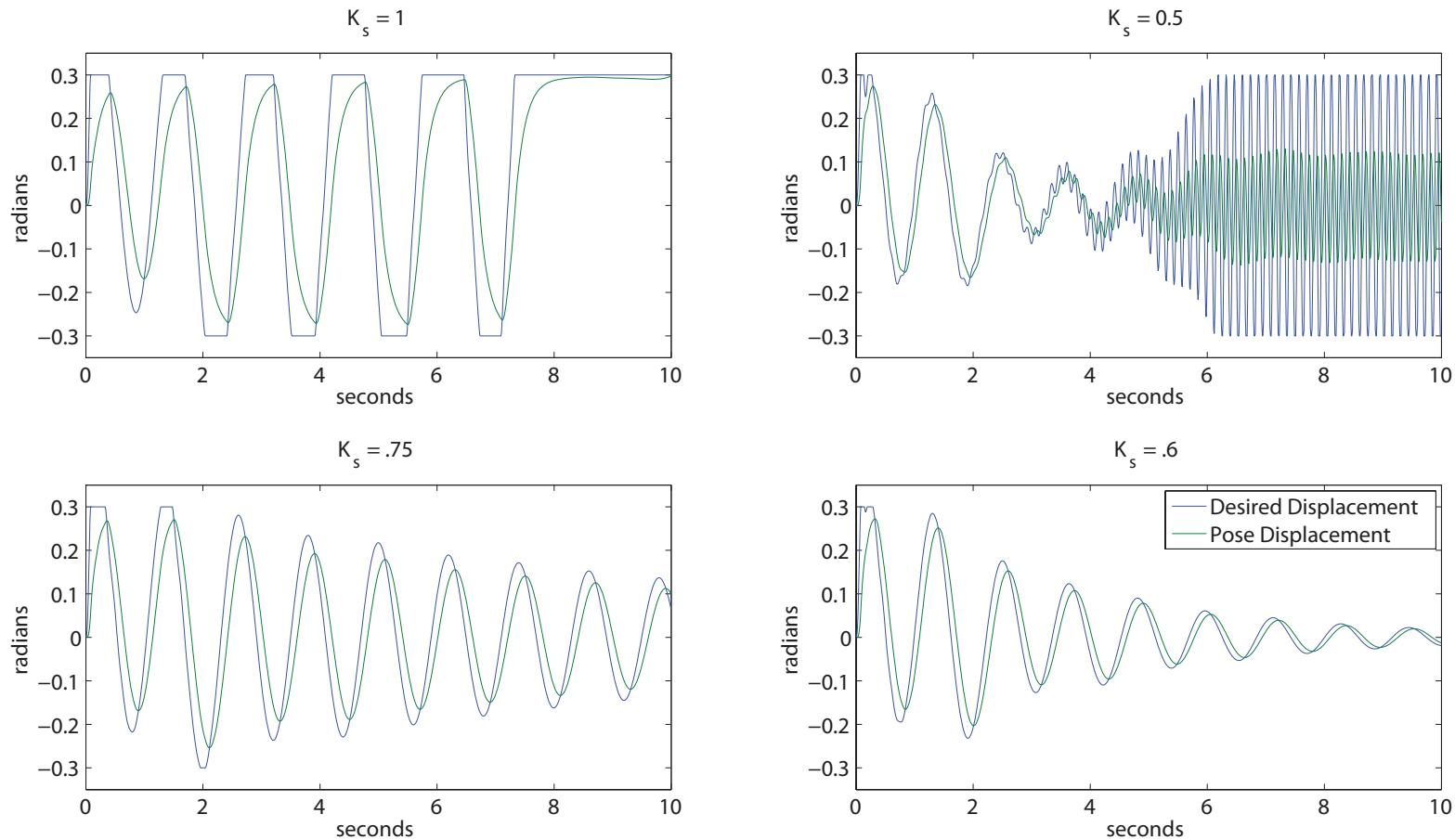


Figure 6.17: These plots show the pose command and pose displacement corresponding to the four trials shown in figure 6.16. They show that the system tracked the desired pose more closely in the trials where K_s was smaller.

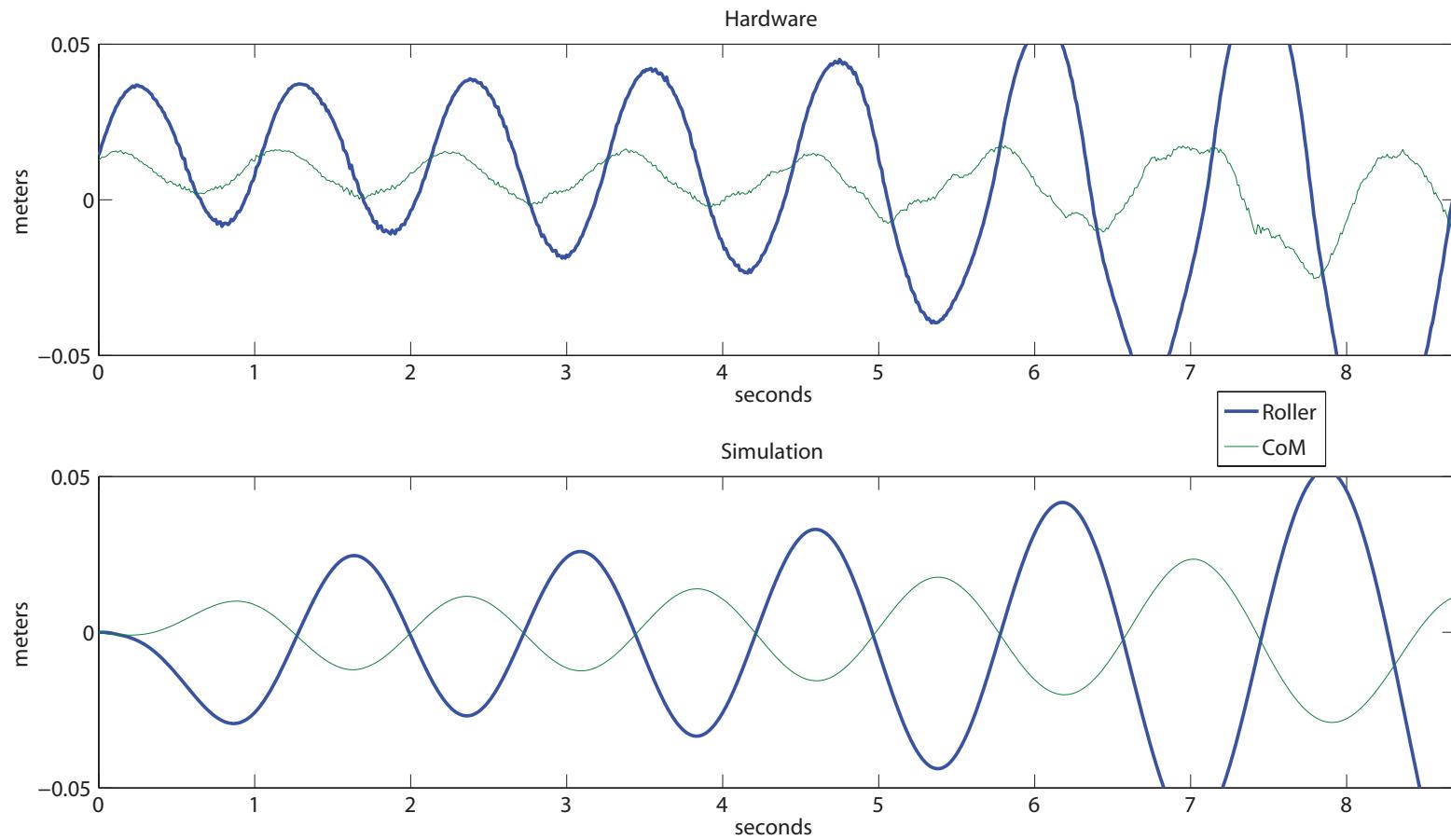


Figure 6.18: A comparison between the increasing low frequency oscillation failure mode in both simulation and hardware.

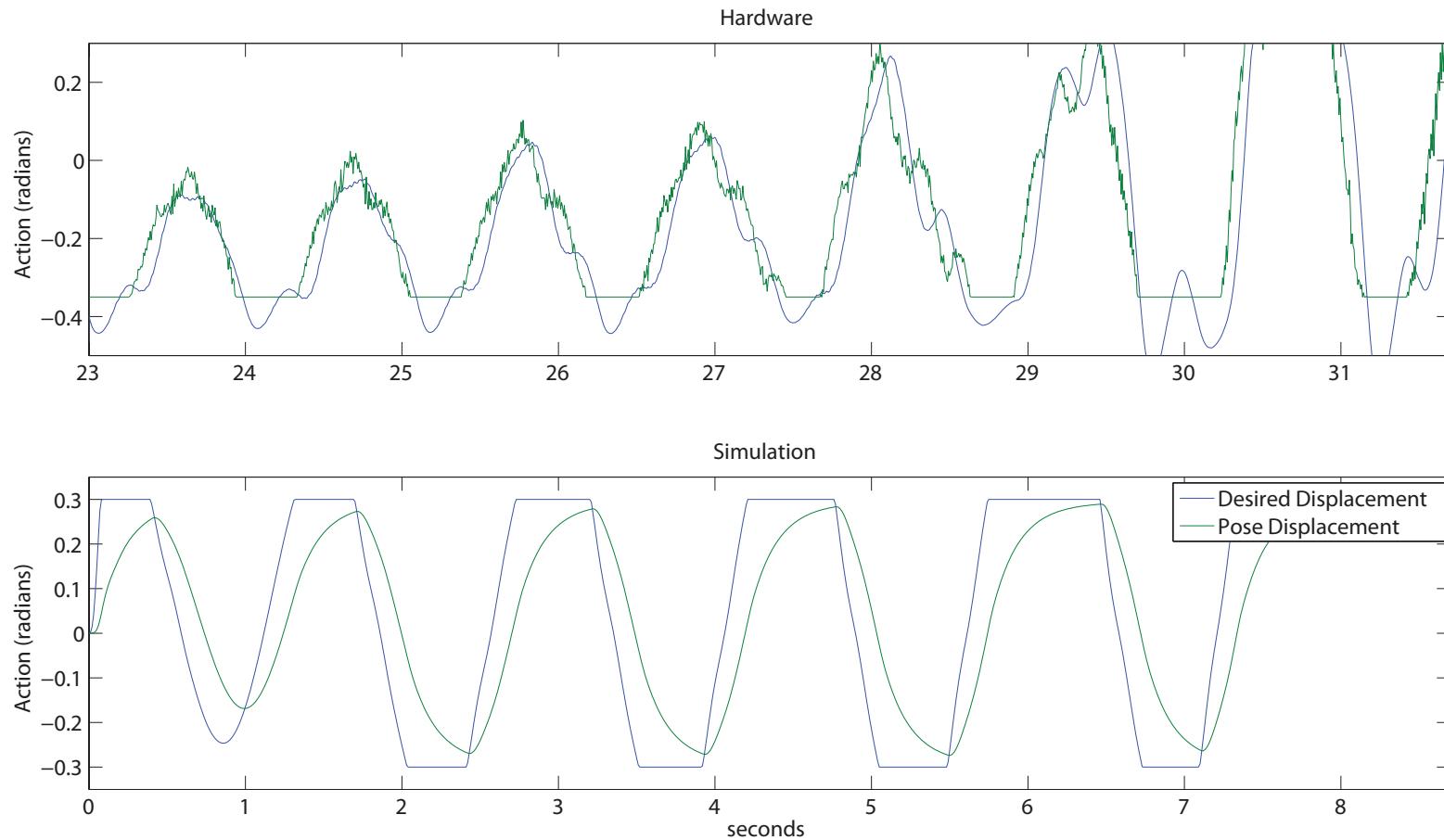


Figure 6.19: A comparison between the action trajectories in simulation and hardware in the increasing low frequency oscillation failure mode.

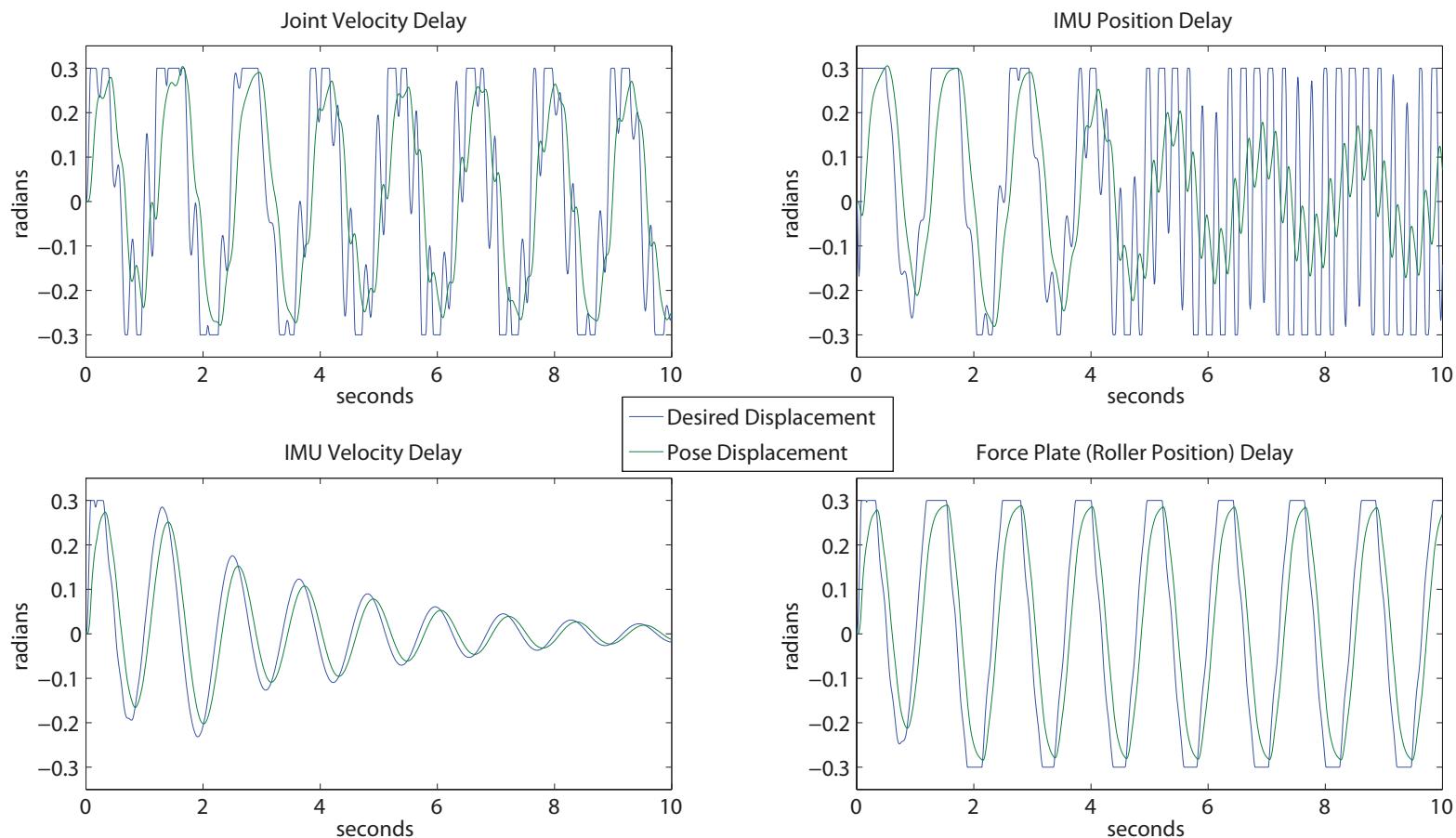


Figure 6.20: Four trials with various signal delays. In the upper left plot, the joint velocity was delayed by twenty milliseconds. In the upper right plot, the IMU orientation signal was delayed by four milliseconds. In the lower left plot, the IMU angular rate signal was delayed by twenty milliseconds. The lower right plot shows the force plate signal delayed by ten milliseconds. Longer delays produced immediate failure in all cases.

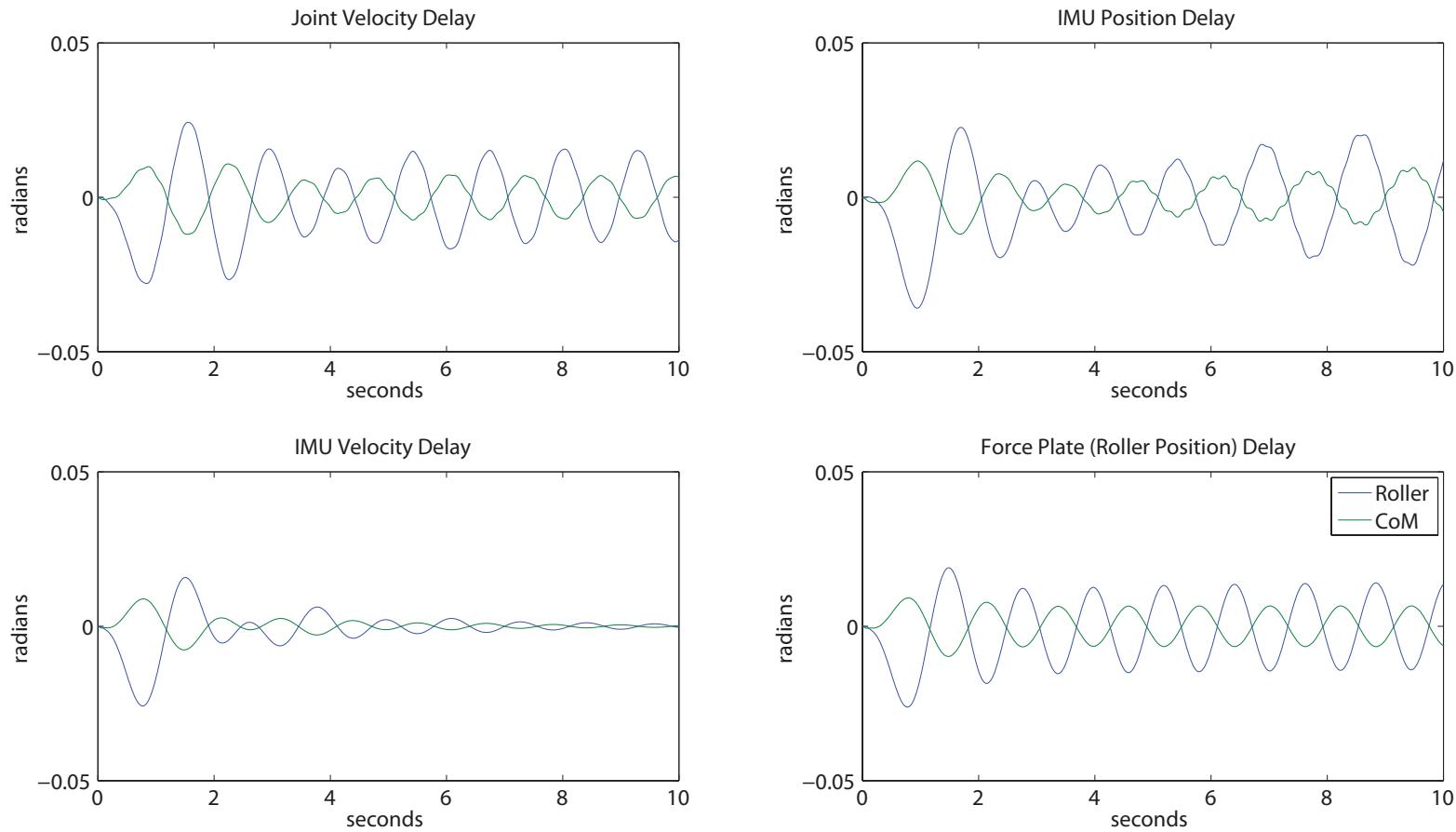


Figure 6.21: The pose command and pose displacement corresponding to the four trials shown in figure 6.20.

by the board changes, the center of pressure can move away from the bottom of the roller. We approximated this displacement in simulation by scaling the lateral acceleration of the roller and using that value to offset the position signal recorded from the simulated force plate. We used a scaling coefficient of 0.0025 s^2 , which yields a position displacement of 5mm for an roller acceleration of $2\frac{\text{m}}{\text{s}^2}$. In simulation, we observed maximum roller accelerations of slightly less than $1.5\frac{\text{m}}{\text{s}^2}$, so the maximum absolute position error introduced by the simulation of this error is less than 5mm . Simulating with a smaller scaling coefficient of 0.001 produced a stable simulation, while 0.01 resulted in nearly immediate failure. The important feature of the failures caused by the contact sensing simulation is that it matches the low frequency bang-bang control output we saw in hardware.

Examination of the simulation data revealed that the roller's lateral acceleration was tightly coupled to the joint space displacement along the action basis, with the data being well fit by a linear relationship with acceleration equal to 8.5 times the basis excitation. This relationship completes a feedback loop which begins with the roller velocity signal, which drives the control output, which in turn drives the pose excitation, which directly alters the observed roller position, which changes the estimated roller velocity. With a CoM velocity feedback gain of approximately 50 and an output range of ± 0.3 a velocity perturbation of $6\frac{\text{mm}}{\text{sec}}$ can drive the output over its full range. This perturbation is within the range of the disturbance introduced by the observed accelerations. Figure 6.22 illustrates the results of this simulation. Further evidence for the roller position sensing error hypothesis is provided by a comparison between the roller position sensed using motion capture and the roller position sensed using the force plate. Using the larger diameter roller, we attached motion capture markers to each end of the shaft running through the axis of the roller. A human balanced on a bongo-board on the roller to simulate the contact forces experienced during robot bongo-boarding. Both the motion capture marker positions and the force plate readings were recorded simultaneously by the motion capture controller. This configuration eliminated differences in time base between the two traces because both signals were recorded on the same clock pulse. Figure 6.24 shows the difference

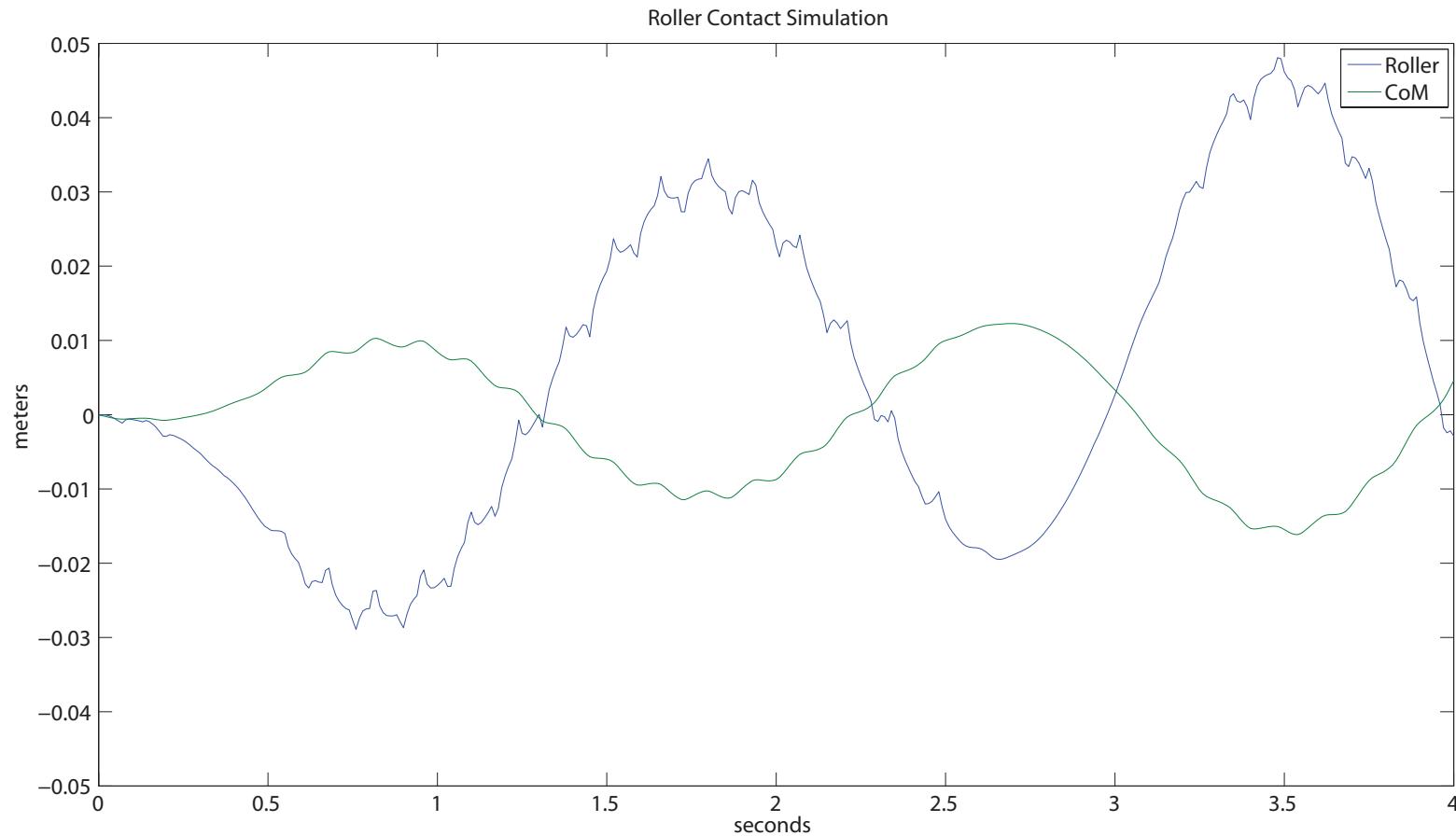


Figure 6.22: The reduced model state trajectory observed during the contact model simulation trial.

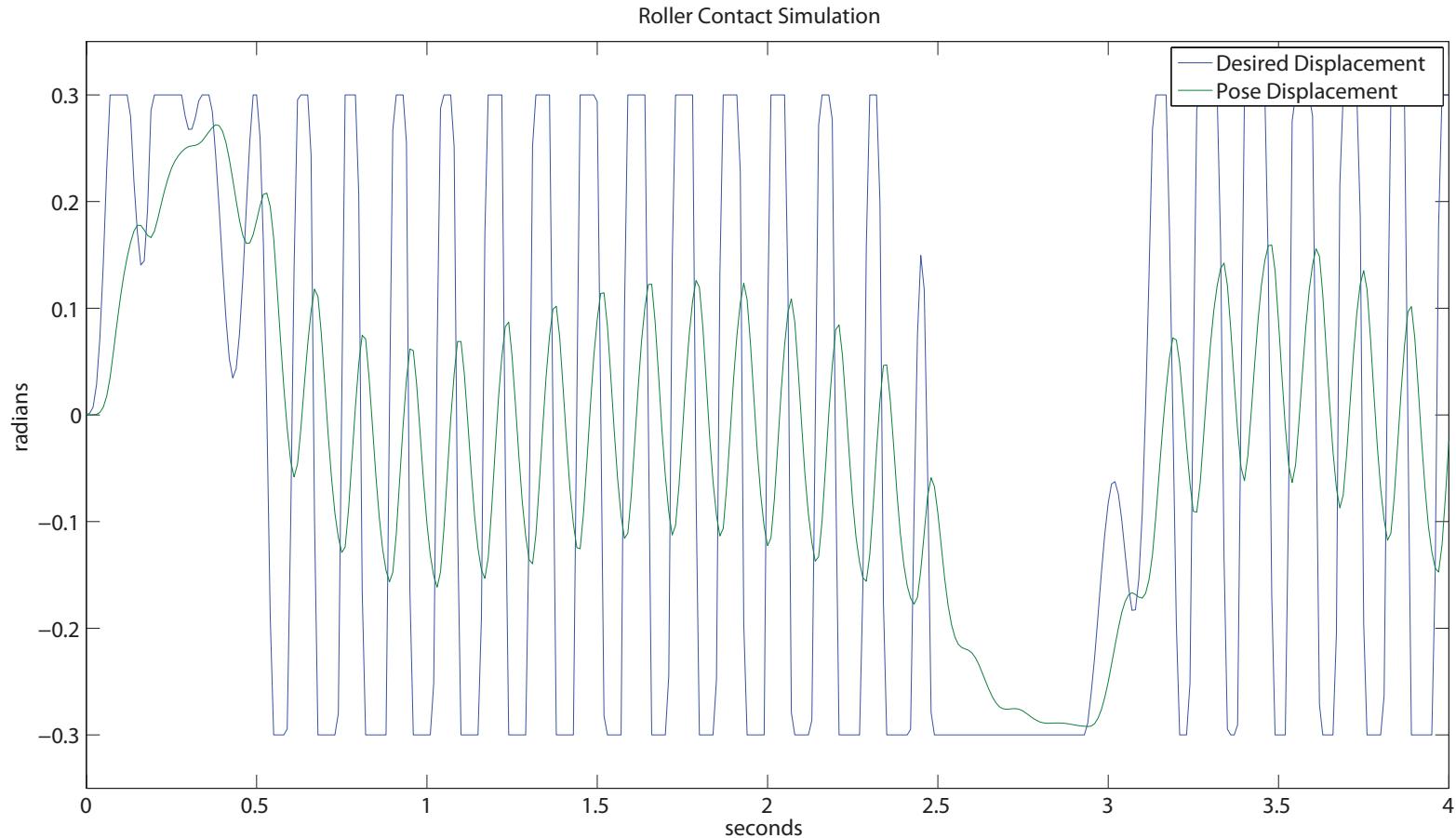


Figure 6.23: Low frequency bang-bang control output produced by modeling the effects of contact dynamics on the sensed roller position. The state trajectory for this trial is shown in figure 6.22.

between these two traces. The error magnitude, shown in figure 6.25, was on the order of 5mm. Fitting the error with a linear regression based on the roller acceleration and velocity reduces the mean squared error from 4.7mm to 1.8mm.

While multiple failure modes are possible in simulation, and all of these modes can be forced by introducing features that more accurately reflect the delays present in hardware, only the model of the effect that contact dynamics have on the sensed roller position produced the characteristic bang-bang control outputs we saw in hardware when the system was tuned so that it did not produce either the high-frequency pose control instability or the low-frequency increasing oscillations caused by slow response times. Furthermore, our observation in hardware that lowering velocity feedback gains and slowing down the response time of the pose controller helped to avoid entering this failure mode is consistent with our observations in simulation. We conclude that this error, and other potential unmodeled coupling between observed roller position and commanded action are probably the root cause of poor performance in hardware. In general, any unexpected motion of the roller caused by the commanded action could produce similar perturbations in the roller velocity signal, with the potential for similar feedback to occur.

6.4.1 Discussion

This failure analysis yields some insight into how our controller design methodology might be improved. The surprising feature of the hardware failure is that it happened despite the apparent robustness of the controller to model parameter and state estimation error in simulation. Before moving to hardware, we demonstrated that our reduced model learning procedure quickly converged to stable gains in simulation, over a range of model parameter perturbations. Additionally, we had shown that the controller was robust to the introduction of sensor error in the form of Gaussian noise and constant offset, and to external perturbations. Despite this robustness, our failure analysis shows that a particular type of a state estimation error could have caused the failures we saw in hardware. Our earlier evaluation did not consider this class of errors.

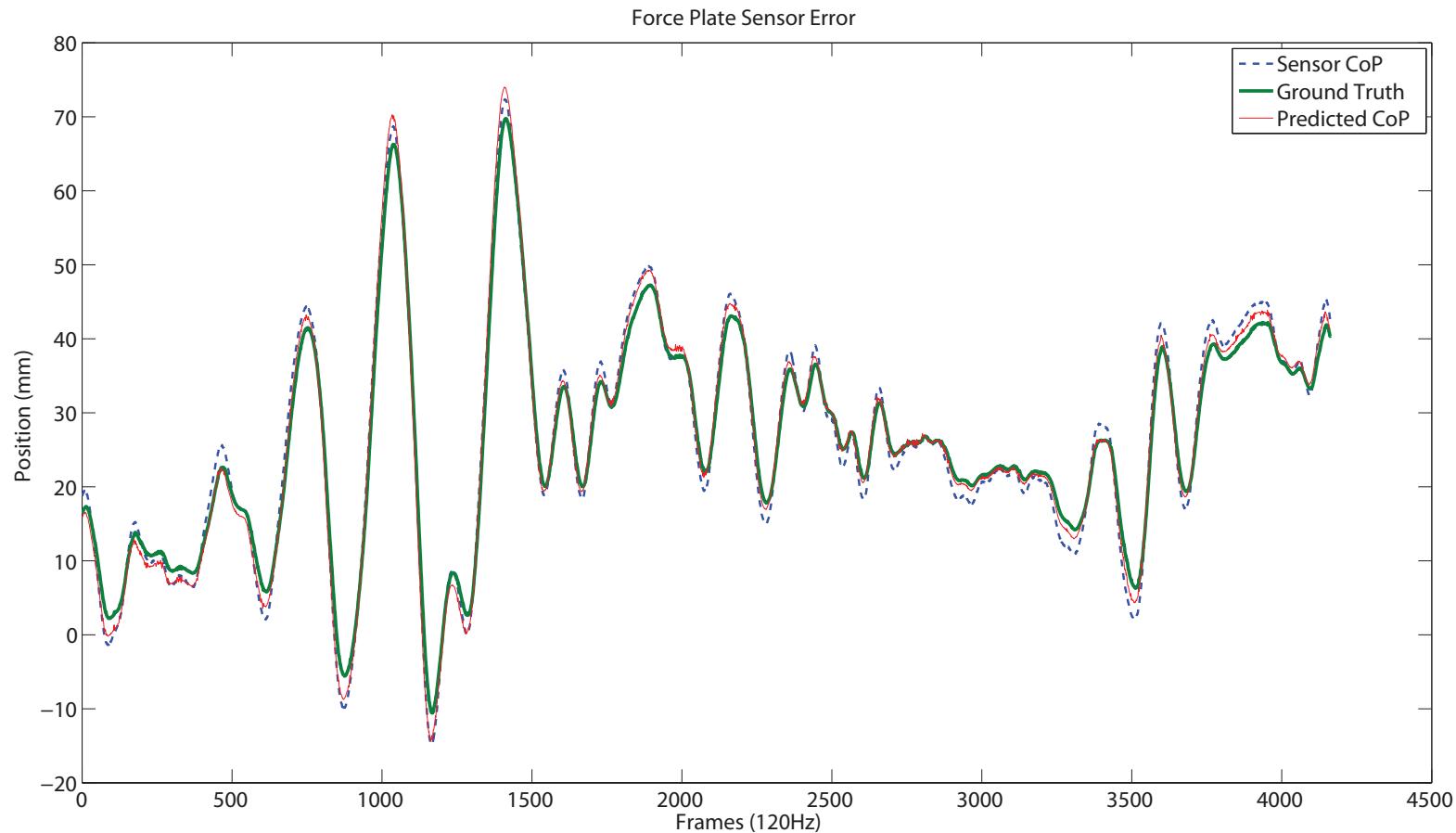


Figure 6.24: A comparison between roller position reported by the force plate and ground truth from motion capture data. The predicted sensor reading based on a model of the sensor error that includes roller velocity and acceleration is also shown.

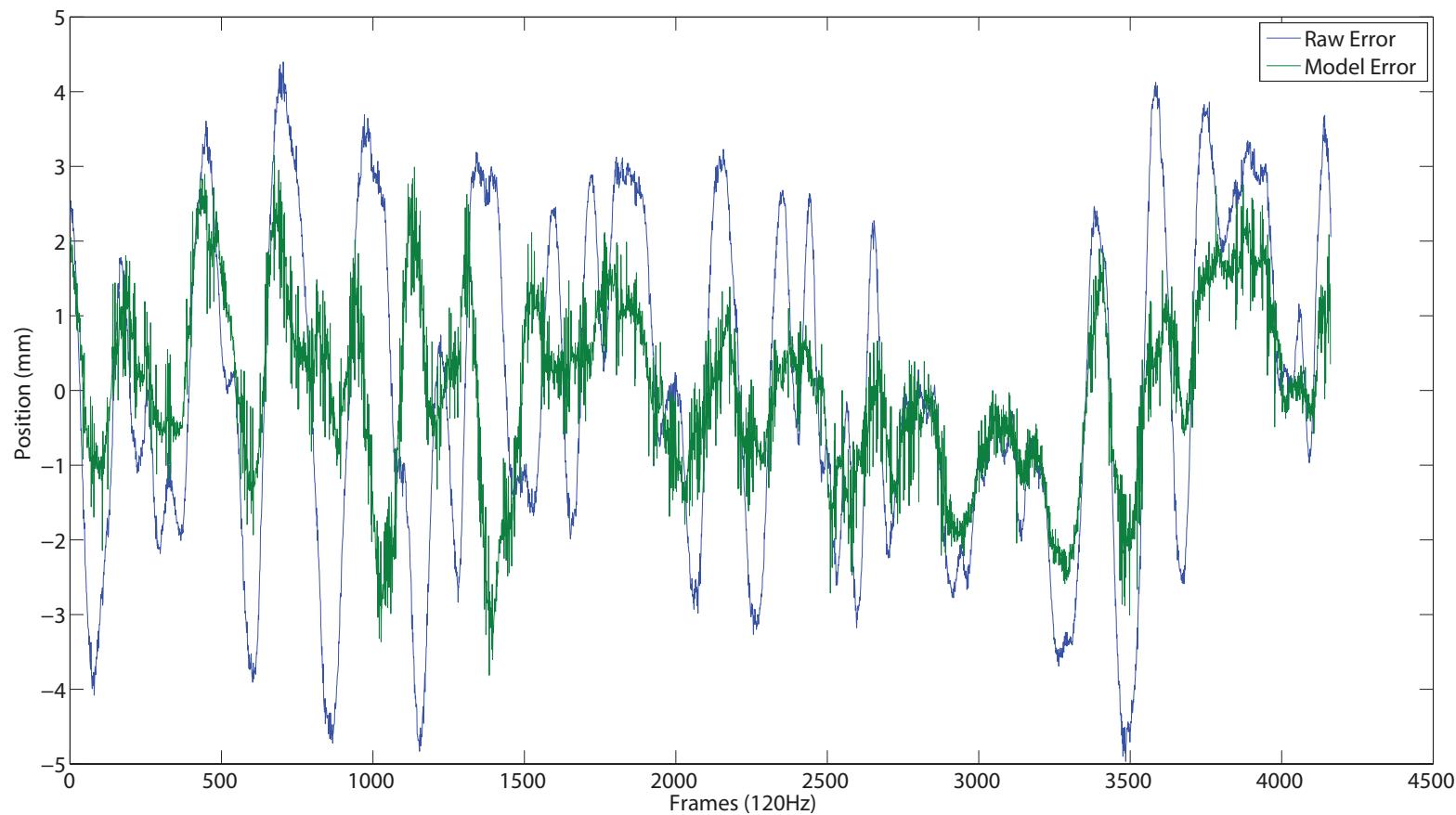


Figure 6.25: The difference between the force plate's center of pressure and the ground truth roller position. Additionally, the plot shows the difference between the predicted force plate reading and the actual force plate reading.

In our experience, the most difficult errors to correct are correlated disturbances over time, because most of the robust control tools we use, like linear quadratic regulators and Kalman filters, are designed to compensate for uncorrelated noise. We compensated for some errors of this more difficult type with control features like the acceleration variance minimizing gravity compensation torque solution, which compensates for constant scaling errors in torque output, and tested our ability to model and correct for other long-term sources of correlated error like model parameter miscalibration. The coupling of the roller motion to the observed roller position was not captured by any of these evaluations, and our controller proved to be very sensitive to this particular type of error. This error is one of a large class of sensing errors in which the observed state can be expressed as a linear function of the true state and the control input. While our control formulation includes an observation matrix, we did not learn its parameters from data, but supplied values based on earlier sensor calibration.

It seems unlikely that the approach to state estimation we used could have prevented this problem. Specifically, our Kalman filter based state estimator is designed to be robust to uncorrelated white noise in sensor readings and state updates, but does not include the possibility of an altered observation matrix that could be used to represent the unmodeled roller position sensor error. This deficiency suggests two changes to our methodology. First, we could attempt to learn a general model relating system state to sensor readings. Presently we refine the reduced model dynamics based on experimental data, but it is possible that the observation matrix in our linear system could also be fit to the data. Second, when evaluating failures, we assumed that large discrepancies between the observed and predicted trajectories were due to errors in the dynamic model, rather than in sensing. Adding an additional source of ground truth data, for example a robust motion tracking system, could have been used to disambiguate these two sources of error and to learn the values of the observation matrix.

We did not use ground truth from motion capture because processing delays made it difficult to incorporate into real-time control feedback. However, our failure analysis suggests that it would have been an early way to detect our sensing errors if it had

been used in an off-line capacity to verify the state estimation and sensor readings we were using in the real time controller.

Future attempts at performing the bongo-board task in hardware could consider forgoing the need to directly sense roller position. Humans are able to perform the bongo-board task without directly observing the roller position, and report having a strong sense of roller location while performing the task. This data suggests that foot contact forces and body inertia provide enough information to infer the roller position.

The control design we used in our trials provides several important features that should be preserved in future attempts. First, it allows the control problem to be decomposed into components that can be tested independently. The body pose controller can be tested in standing balance, and then observed while supported on the bongo-board to gather data that is used to refine the bongo-board reduced model parameters. Once the pose-control component is tested the task-controller can be implemented and tested independently. Several specific features of the pose controller were also important to producing robust and compliant pose-control while on the bongo-board. Representing gains in the space of the modes of the mass model allowed us to quickly tune the behavior of the pose controller to produce the desired compliance for the bongo-board task. The acceleration-variance minimizing gravity compensation design and learned error correction term for gravity compensation were important elements of producing a stable and compliant pose controller on the bongo-board. The reduced model parameter learning methodology we used proved able to adapt to significant changes in the mass model in simulation, and could be preserved in a future approach that included more robust sensor error calibration.

Chapter 7

Conclusions

In this thesis, we described a method for designing and implementing humanoid robot control systems. The control system design we developed was informed priority control. Informed priority control uses a serial composition of two or more model based controllers, and automates the generation of each model. In section 3.4, we showed how approximate models for the system regulated by each controller could be built using an automatic differentiation process, and discussed the limits of those approximations.

Automating the generation of these models and controllers makes experimenting with many reduced model representations feasible. We demonstrated that this experimentation is important because the best choice for the reduced model of a system is often non-obvious. In section 3.3.3, we showed that some plausible choices for reduced models can result in unexpectedly poor performance. We also explained why the predominant work flow for designing controllers for humanoid robots, which begins with the choice of a reduced model and builds the control system on top of that model, is not well suited for rapid experimentation with alternative reduced models.

The implementation of a controller for the bongo-board task included several techniques that were particularly important to producing a functioning controller. Minimum variance gravity compensation (section 4.8) chose gravity compensation torques that minimized unwanted accelerations due to scaling errors in the torque output calibrations. Designing whole-body linear feedback gains using an eigenmode

decomposition was an effective and practical way to produce a pose controller with the response characteristics we wanted. Linear models of the error in the joint torque estimate provided by the rigid body model (section 5.4.2) also allowed us improve the match between predicted and observed joint torques at rest.

Finally, faced with divergent performance in simulation and hardware, we analyzed probable causes for the degraded hardware performance (section 6.4) . Using simulations of possible sources of error, we discovered that the characteristic failure behavior we observed could have been caused by the coupling between the lateral load on the support surface and the sensor reading for the roller position. We also established that the failures were most likely not due to improper tuning of the pose controller’s behavior, or delays in the readings from various sensors.

This thesis has shown that the choice of reduced model representation for humanoid control problems is an important factor in the performance of the control system, and that most approaches to control system design in the literature require significant effort to change the reduced model representation once a control system has been implemented. The technique we suggest, informed priority control, reduced the effort required to change reduced model representations. Additionally, we showed that informed priority control, combined with other techniques discussed in this thesis, could be used to construct robust controllers in simulation.

Future Work

The automated model reduction technique developed for Informed Priority Control can be applied in other contexts. Of particular interest is sub-dividing the policy optimization stage of developing a SIMBICON style controller to reduce the number of free parameters being optimized in each stage. For example, rather than simultaneously optimizing policy parameters for a full three dimensional walking biped, a policy for an inverted pendulum walker based on a reduction of the full system dynamics could be build first. That walker could be extended to a more complex sagittal plane simulation and additional policy parameters introduced and optimized. Finally, the full dynamics could be introduced and the full set of policy parameters

optimized over. The links between these simplified models and the full system, as well as the relationships between the control policies for the simplified models and the full model could be expressed using the action inflation and state reduction functions used by Informed Priority Control.

We have not developed in detail a technique that would allow Informed Priority Control to update simplified models based on data collected from experiments. Because low dimensional models have fewer free parameters, they should require less data to fit robustly than the full state dynamic model. Future work could explore the use of experimental data, in either online or offline context, to update sub-system models. Specifically, when sub-system configurations change, a technique that updated models based on experiments conducted with earlier configurations could eliminate the need to re-collect experimental data describing sub-system performance after each configuration change.

Finally, when developing the linear feedback component of the pose controller for the bongo-board task we did not investigate using an LQR design process in the mode space representation. It's possible that this design would have simplified choosing the entries of the cost matrices, while using more information about the model in choosing the gains than the direct gain tuning approach we used.

Bibliography

Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehicular dynamics, with application to modeling helicopters. In *Proc., Advances in Neural Information Processing Systems (NIPS)*, 2006. 22

R. McN. Alexander. A model of bipedal locomotion on compliant legs. *Philosophical Transactions: Biological Sciences*, 338(1284):189–198, October 1992. 3

Chae H. An, Christopher G. Atkeson, and John Hollerbach. *Model-Based Control of a Robot Manipulator*. MIT Press, 1988. 22, 96

S. O. Anderson and J. K. Hodgins. Adaptive torque-based control of a humanoid robot on an unstable platform. In *Proc., IEEE Humanoids*, Nashville, Tennessee, 2010. 13, 36, 56, 63

S. O. Anderson and J. K. Hodgins. Informed priority control for humanoids. In *Proc., IEEE Humanoids*, Bled, Slovenia, November 2011. 57

S. O. Anderson, M. Wisse, C. G. Atkeson, J. K. Hodgins, G. J. Zeglin, and B. Moyer. Powered bipeds based on passive dynamic principles. In *Proc., IEEE Humanoids*, pages 110–116, December 2005. 14

S.O. Anderson, C.G. Atkeson, and J.K. Hodgins. Coordinating feet in bipedal balance. In *Proc., IEEE Humanoids*, pages 624 – 628, November 2006. 5, 29

Stuart O Anderson, Jessica K Hodgins, and Christopher G Atkeson. Approximate policy transfer applied to simulated bongo board balance. In *Proc., IEEE Humanoids*, 2007. 5

A.C. Antoulas, D.C. Sorenson, and S. Gugercin. *Structured Matrices in Mathematics, Computer Science, and Engineering*, volume 1, chapter A survey of model reduction methods for large-scale systems. 2001. 27

T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, and R. Dillmann. ARMAR-III: An integrated humanoid platform for sensory-motor control. In *Proc., IEEE Humanoids*, pages 169–175, Genova, Italy, December 2006. 18

C. G. Atkeson and J. Morimoto. Non-parametric representation of policies and value functions: A trajectory based approach. In *Proc., Advances in Neural Information Processing Systems (NIPS)*, volume 15, 2003. 16

C. G. Atkeson and B. Stephens. Random sampling of states in dynamic programming. In *Proc., Advances in Neural Information Processing Systems (NIPS)*, 2007. 16

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. *Artificial Intelligence Review*, 11:11–73, 1997a. 22, 75

Christopher G. Atkeson. Using local trajectory optimizers to speed up global optimization in dynamic programming. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, *Proc., Advances in Neural Information Processing Systems*, volume 6, pages 663–670. Morgan Kaufmann Publishers, Inc., 1994. 19

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning for control. *Artificial Intelligence Review*, 11(1-5):75–113, 1997b. 22

J. Andrew Bagnell and Jess G. Schneider. Autonomous helicopter control using reinforcement learning policy search methods. In *Proc. International Conference on Robotics and Automation (ICRA)*, May 2001. 22

J. Barbic, A. Safanova, J. Pan, C. Faloutsos, J. Hodgins, and N. Pollard. Segmenting motion capture data into distinct behaviors. In *Proc., Graphics Interface*, 2004. 18

Philippe Beaudoin, Michiel van de Panne, and Pierre Poulin. Automatic construction of compact motion graphs. Technical Report 1296, DIRO, Universite de Montreal, May 2007. 18

D.C. Bentivegna and C.G. Atkeson. Learning from observation using primitives. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, pages 1988–1993, 2001. 11

R. Blickhan and R. J. Full. Similarity in multilegged locomotion: Bouncing like a monopode. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology*, 173(5):509–517, November 1993. 59

M.S. Branicky, T.A. Johansen, I. Petersen, and E. Frazzoli. On-line techniques for behavioral programming. In *Proc., IEEE Conference on Decision and Control*, pages 1840–1845, 2000. 11

Thomas Buschmann, Sebastian Lohmeier, Mathias Bachmayer, Heinz Ulbrich, and Friedrich Pfeiffer. A collocation method for real-time pattern generation. In *Proc., IEEE Humanoids*, 2007. 28

Min Gyu Choi, Jehee Lee, and Sun Yong Shin. Planning biped locomotion using motion capture data and probabilistic roadmaps. *ACM Transactions on Graphics (SIGGRAPH 2003)*, 22(2):182–203, April 2003. 17

A. Dasgupta and Y. Nakamura. Making feasible walking motion of humanoid robots from human motion capture data. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, volume 2, pages 1044–1049, Detroit, MI, May 1999. 19

Kemalettin Erbatur and Utku Seven. An inverted pendulum based approach to biped trajectory generation with swing leg dynamics. In *Proc., IEEE Humanoids*, 2007. 28

M. Erdmann and M. Mason. An exploration of sensorless manipulation. *IEEE J. Robot. Automat.*, 4(4), August 1988. 11

A. Fang and N. Pollard. Efficient synthesis of physically valid human motion. In *ACM Transactions on Graphics*, 22, 2003., 2003. 21, 62

Ray Fielding. *Architectural Styles and the Design of Network-based Software Architectures*. PhD thesis, University of California, Irvine, 2000. 53

A. Fod, M.J. Mataric, and O.C. Jenkins. Automated derivation of primitives for movement classification. *Autonomous Robots*, 1:39–54, January 2002. 11

M. Garcia, A. Chatterjee, A. Ruina, and M. J. Coleman. The simplest walking model: Stability, complexity, and scaling. *ASME J. Biomech. Eng.*, 120(2):281–288, April 1998. 12, 59

P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. *SIAM Journal on Optimization*, 12(4):979–1006, 2002. 92

Jr. Golliday, C. and H. Hemami. An approach to analyzing biped locomotion dynamics and designing robot locomotion controls. *IEEE Transactions on Automatic Control*, 22(6):963–972, December 1977. ISSN 0018-9286. 26

A. Goswami, B. Espiau, and A. Keramane. Limit cycles and their stability in a passive bipedal gait. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, Piscataway, NJ, 1996. 12, 59

Robert D. Gregg and Mark W. Spong. Reduction based control with application to three-dimensional bipedal walking robots. In *American Control Conference*, Seattle, Washington, 2008. 27

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In *Proc., IEEE International Conference on Evolutionary Computation*, 1996. 15

J. K. Hodgins and M. N. Raibert. Adjusting step length for rough terrain locomotion. *IEEE Trans. Robotics and Automation*, 7(3):289 – 298, 1991. 59

J.K. Hodgins. Biped gait transitions. In *Proc., IEEE International Conference on Robotics and Automation*, 1991. 59

S.H. Hyon. Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. *IEEE Transactions on Robotics*, 25(1):171–178, 2009. 7, 20

S.H. Hyon, JG Hale, and G. Cheng. Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces. *IEEE Transactions on Robotics*, 23(5):884–898, 2007. 12, 21

D.H. Jacobson and D.Q. Mayne. *Differential Dynamic Programming*. Elsevier, 1970. 62

Sumit Jain and C. Karen Liu. Modal-space control for articulated characters. *ACM Transactions on Graphics*, 30:118:1–118:12, October 2011. 26, 27

Doug L. James and Kayvon Fatahalian. Precomputing interactive dynamic deformable scenes. *ACM Transactions on Graphics (SIGGRAPH 2003)*, 22(3):879–887, July 2003. 25

O.C. Jenkins and M.J. Mataric. Automated derivation of behavior vocabularies for autonomous humanoid motion. In *Proc., Autonomous Agents and Multi Agent Systems*, pages 225–232, 2003. 11

Odest C. Jenkins and Maja J Matarić. A spatio-temporal extension to isomap nonlinear dimension reduction. In *Proc., International Conference on Machine Learning*, pages 441–448, July 2004. 28

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern generation by using preview control of zero-moment point. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, 2003. 4, 21, 28

Jung-Yup Kim, Ill-Woo Park, and Jun-Ho Oh. Experimental realization of dynamic walking of biped humanoid robot khr-2 using zmp feedback and inertial measurement. *Advanced Robotics*, 20(6):707 – 736, June 2006. 19

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. *ACM Transactions on Graphics*, 21(3):473–482, July 2002. 18

James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika Inoue. Motion planning for humanoid robots. In *Proc. 11th Intl. Symp. of Robotics Research*, 2003. 17

J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-stable motion planning for humanoid robots. *Autonomous Robots*, 12(1):105–118, 2002. 21

Ryo Kurazume, Shuntaro Tanaka, Masahiro Yamashita, Tsutomu Hasegawa, and Kan Yoneda. Straight legged walking of a biped robot. In *Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2005. 18

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. *International Journal of Robotics Research*, 20(5):378–400, May 2001. 16

Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Iowa State University, Ames, IA, 50011, USA, 1998. 16

Jehee Lee, Jinxiang Chai, Paul Reitsma, Jessica Hodgins, and Nancy Pollard. Interactive control of avatars animated with human motion data. *ACM Transactions on Graphics (SIGGRAPH 2002)*, 21(3), July 2002. 18

S. Levine, J. M. Wang, A. Haraux, Z. Popovi, and V. Koltun. Continuous character control with low-dimensional embeddings. *ACM Transactions on Graphics (SIGGRAPH 2012)*, 31(4), 2012. 18

C. Karen Liu and Zoran Popović. Synthesis of complex dynamic character motion

from simple animations. In *SIGGRAPH '02: Proc., Computer graphics and interactive techniques*, pages 408–416, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-521-1. 26

M. Vukobratovic and B. Borovac. Zero-moment point - thirty five years of its life. *Int. J. of Humanoid Robotics*, 1(1):157–173, March 2004. 12

A. Macchietto, V. Zordan, and C. R. Shelton. Momentum control for balance. In *Transactions on Graphics*, volume 28, 2009. 35

Arash Mahboobin, Patrick J. Loughlin, Mark S. Redfern, Stuart O. Anderson, Christopher G. Atkeson, and Jessica K. Hodgins. Sensory adaptation in human balance control: Lessons for biomimetic robotic bipeds. *Neural Networks*, 21(4): 621 – 627, 2008. ISSN 0893-6080. Robotics and Neuroscience. 23

M. Mason. The mechanics of manipulation. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, volume 2, pages 544–548, March 1985. 11

M.J. Mataric, M. Williamson, J. Demiris, and A. Mohan. Behavior-based primitives for articulated control. In *Proc., Fifth Interational Conference on Simulation of Adaptive Behavior*, pages 165–170. MIT Press, 1998. 11

Microstrain, Inc. <http://www.microstrain.com/>, 2008. 6

M. Mistry, S. Schaal, and K. Yamane. Inertial parameter estimation of floating-base humanoid systems using partial force sensing. In *Proc., IEEE Humanoids*, 2009. 22

M. Mistry, J. Buchli, and S. Schaal. Inverse dynamics control of floating base systems using orthogonal decomposition. In *Proc., International Conference on Robotics and Automation (ICRA)*, 2010. 64

J. Morimoto, G. J. Zeglin, and C. G. Atkeson. Minimax differential dynamic programming: application to a biped walking robot. In *Proc., International Conference on Intelligent Robots and Systems*, volume 2, pages 1927 – 1932. IEEE, 2003. 58

J. Morimoto, Sang-Ho Hyon, C. G. Atkeson, and G. Cheng. Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, pages 2711–2716, Pasadena, CA, 2008. 25, 28

David D. Morrison, James D. Riley, and John F. Zancanaro. Multiple shooting method for two-point boundary value problems. *Commun. ACM*, 5(12):613–614, 1962. ISSN 0001-0782. 61

Bilge Mutlu, Fumitaka Yamaoka, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. Nonverbal leakage in robots: communication of intentions through seemingly unintentional behavior. In *Proc., ACM/IEEE International Conference on Human Robot Interaction*, 2009. 10

J. Nakanishi, M. Mistry, and S. Schaal. Inverse dynamics control with floating base and constraints. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, pages 1942–1947, 2007. 21, 64

Jonghoon Park and Youngil Youm. General zmp preview control for bipedal walking. In *Proc., IEEE International Conference on Robotics and Automation*, 2007. 26, 56

N. S. Pollard and P. S. A. Reitsma. Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In *Proc., Yale Workshop on Adaptive and Learning Systems*, 2001. 18, 20, 21

Zoran Popović and Andrew Witkin. Physically based motion transformation. In *SIGGRAPH*, pages 11–20. ACM, 1999. ISBN 0-201-48560-5. 28, 33

M. H. Raibert. *Legged robots that balance*. The MIT Press, Cambridge, Massachusetts, 1986. ISBN 0-262-18117-7. 14, 56, 59

John Rebula, Fabián Cañas, and Jerry Pratt. Learning capture points for humanoid push recovery. In *Proc., IEEE Humanoids*, 2007. 28

C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: multidimensional motion interpolation. *IEEE Computer Graphics and Applications*, 18(5):32–40, September/October 1998. ISSN 0272-1716. 18

L. Saab, N. Mansard, F. Keith, J-Y. Fourquet, and P. Soueres. Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints. In *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, pages 1091–1096, 2011. 56

Alla Safanova, Nancy S. Pollard, and Jessica K Hodgins. Optimizing human motion for the control of a humanoid robot. In *Proc., International Symposium on Adaptive Motion of Animals and Machines (AMAM2003)*, March 2003. 18, 19

Alla Safanova, Jessica K Hodgins, and Nancy Pollard. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. *ACM Transactions on Graphics (SIGGRAPH 2004)*, 23(3), August 2004. 18, 25, 26, 28

E. Schuitema, D. G. E. Hobbelen, P. P. Jonker, M. Wisse, and J. G. D. Karssen. Using a controller based on reinforcement learning for a passive dynamic walking robot. In *Proc., IEEE Humanoids*, pages 232–237, December 2005. 58

Adam L. Schwartz. *Theory and Implementation of Numerical Methods Based on Runge-Kutta Integration for Solving Optimal Control Problems*. PhD thesis, University of California at Berkeley, Berkeley, CA, 1996. 61, 62

L. Sentis and O. Khatib. A whole-body control framework for humanoids operating in human environments. *Proc., IEEE International Conference on Robotics and Automation (ICRA)*, pages 2641–2648, May 2006. ISSN 1050-4729. 12

Luis Sentis. *Synthesis and Control of Whole-Body Behaviors in Humanoid Systems*. PhD thesis, Stanford University, 2007. 58

Hyun Joon Shin and Jehee Lee. Motion synthesis and editing in low-dimensional spaces. *Computer Animation and Virtual Worlds (Special Issue: CASA 2006)*, 17(3-4):219 – 227, July 2006. 28

Takaaki Shiratori, Shunsuke Kudoh, Shin'ichro Nakaoka, and Katsushi Ikeuchi. Temporal scaling of upper body motion for sound feedback system of a dancing humanoid robot. In *Proc., IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2007. 19

J. D. Simon and S. K. Mitter. A theory of modal control. *Information and Control*, 13:316–353, 1968. 26

Kwang Won Sok, Manmyung Kim, and Jehee Lee. Simulating biped behaviors from human motion data. *ACM Transactions on Graphics*, 26(3):105:1–105:10, July 2007. 19

R. F. Stengel. *Optimal Control and Estimation*. Dover, New York, 1994. 61

B. Stephens. *Push Recovery Control for Force-Controlled Humanoid Robots*. PhD thesis, Carnegie Mellon University, August 2011. 12, 35

B. J. Stephens and C. G. Atkeson. Dynamic balance force control for compliant humanoid robots. In *Proc., IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pages 1248–1255, 2010. 55

Benjamin Stephens. Dynamic balance force control for compliant humanoid robots. In *Proc., International Conference on Intelligent Robots and Systems (IROS)*, 2010. 12

Yuval Tassa, Tom Erez, and William D. Smart. Receding horizon differential dynamic programming. In *Proc., Advances in Neural Information Processing Systems (NIPS)*, 2007. 19, 62

J.A. Ting, M. Mistry, J. Peters, S. Schaal, and J. Nakanishi. A bayesian approach to nonlinear parameter identification for rigid body dynamics. In *Proc., Robotics: Science and Systems*. Citeseer, 2006. 22

G. Venture, K. Ayusawa, and Y. Nakamura. Dynamics identification of humanoid systems. In *Proc. CISM-IFToMM Symp. on Robot Design, Dynamics, and Control (ROMANSY)*, pages 301–308, 2008. 22

O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization. *Ann. Oper. Res.*, 37(1-4):357–373, 1992. ISSN 0254-5330. 62

D. W. Vos and A. H. Von Flotow. Dynamics and nonlinear adaptive control of an autonomous unicycle: theory and experiment. In *Proc., IEEE Decision and Control*, 1990. 14, 21

M. Vukobratovic. How to control the artificial anthropomorphic systems. *IEEE Trans. System, Man and Cybernetics SMC-3*, pages 497–507, 1973. 59

J. M. Wang, D. J. Fleet, and A. Hertzmann. Optimizing walking controllers. *ACM Transactions on Graphics (SIGGRAPH 2009)*, 28(5), July 2009. 15

J. M. Wang, D. J. Fleet, and A. Hertzmann. Optimizing walking controllers for uncertain inputs and environments. *ACM Transactions on Graphics (SIGGRAPH 2010)*, 29(4), July 2010. 15

J. M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. Optimizing locomotion controllers using biologically-based actuators and objectives. *ACM Transactions on Graphics (SIGGRAPH 2012)*, 31(4), July 2012. 15, 21

E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek. Hybrid zero dynamics of planar biped walkers. *IEEE Trans. on Automatic Control*, 48(1):42–56, 2003. 27, 56

E. C. Whitman and C. G. Atkeson. Control of instantaneously coupled systems applied to humanoid walking. In *Proc., IEEE Humanoids*, volume 10, 2010. 14

E.C Whitman and C.G Atkeson. Multiple model robust dynamic programming. In *Proc. American Controls Conference*, 2012. 21

M. Wisse, D.G.E Hobbelen, R.J.J Rottevell, S.O. Anderson, and G.J. Zeglin. Ankle springs instead of arc-shaped feet for passive dynamic walking. In *Proc., IEEE Humanoids*, pages 110 – 116, 2006. 21

Andrew Witkin and Michael Kass. Spacetime constraints. In *Computer Graphics (Proc., SIGGRAPH 88)*, pages 159–168, August 1988. 62

Katsu Yamane. *Simulating and Generating Motions of Human Figures*. Springer tracts in advanced robotics 9. Springer, 2006. 20, 21

Katsu Yamane. Systematic derivation of simplified dynamics for humanoid robots. In *Proc., IEEE Humanoids*, volume 12, 2012. 26, 27

Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins. Synthesizing animations of human manipulation tasks. *ACM Transactions on Graphics (SIGGRAPH 2004)*, 23(3), August 2004. 17

Kangkang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Simple biped locomotion control. *ACM Transactions on Graphics*, 26(3):105:1–105:10, July 2007. 14